Acyclic Edge Coloring of Subdivisions of Halin Graphs

Hsin-Hao Lai

Institute of Mathematics
Academia Sinica

July 30, 2009
Joint work with Ko-Wei Lih
Outline

1. Acyclic Edge Colorings
2. Acyclic Edge Coloring Conjecture
3. Main Results
Outline

1. Acyclic Edge Colorings
2. Acyclic Edge Coloring Conjecture
3. Main Results
Outline

1. Acyclic Edge Colorings
2. Acyclic Edge Coloring Conjecture
3. Main Results
Edge Colorings

5-edge coloring

1 4 4 1 1

2 2

3

4 4

5 5
All graphs mentioned in this talk are finite, without loops or parallel edges.

Definition

A proper edge coloring of a graph G is called **acyclic** if:

- there is no 2-colored cycle in G,
- any cycle of G is colored with at least 3 colors,
- the union of any two color classes induces a subgraph of G which is a forest.

Definition

The **acyclic chromatic index**, denoted $a'(G)$, is the minimum k such that G has an acyclic k-edge coloring.
Acyclic Edge Colorings

5-acyclic edge coloring

Hsin-Hao Lai

Acyclic Edge Coloring of Subdivisions of Halin Graphs
A Question

Vizing Theorem (1964)
For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Question
Does $\Delta(G) \leq a'(G) \leq \Delta(G) + 1$ hold for any graph G?
A Question

Vizing Theorem (1964)

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Question

Does $\Delta(G) \leq a'(G) \leq \Delta(G) + 1$ hold for any graph G?

No. $a'(K_{2n}) > \Delta(K_{2n}) + 1 = 2n$ if $n \geq 2$.

![Diagram of K_{2n} graph with edge coloring]

1 2 3 4
Acyclic Edge Coloring Conjecture (AECC)

For any graph G, $\Delta(G) \leq a'(G) \leq \Delta(G) + 2$.

The conjecture was independently posed by Fiamčík in 1978 and Alon, Sudakov, and Zaks in 2001.
Known Results

\[\Delta(G) \leq a'(G) \leq \Delta(G) + 2 \text{ if} \]

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiamčík 1984</td>
<td>(G) is a graph with (\Delta(G) \leq 3).</td>
</tr>
<tr>
<td>Alon, Sudakov, Zaks 2001</td>
<td>(G) is a graph with (\text{girth}(G) \geq c\Delta(G) \log \Delta(G)) for some constant (c).</td>
</tr>
<tr>
<td>Basavaraju, Sunil Chandran 2009</td>
<td>(G) is connected, (\Delta(G) \leq 4), and (| G | \leq 2</td>
</tr>
</tbody>
</table>
Known Results of Planar Graphs

\[\Delta(G) \leq a'(G) \leq \Delta(G) + 2 \text{ if} \]

Sun, Wu 2008

- \(G \) is planar, each pair of 4-cycles are edge-disjoint, and no cycles of length 3, 5.

Borowiecki, Fiedorowicz 2009

- \(G \) is planar and \(girth(G) \geq 5 \) or
- \(G \) is planar and contains no cycles of length 4, 6, 8, 9.

Hou, Wu, Liu, Liu 2009

- \(G \) is planar and \(girth(G) \geq 5 \).
Known Results of $a'(G) \leq \Delta(G) + 1$

$\Delta(G) \leq a'(G) \leq \Delta(G) + 1$, for

<table>
<thead>
<tr>
<th>Fiamčík 1984</th>
<th>G is a graph with $\Delta(G) \leq 3$ and $G \neq K_4, K_{3,3}$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Něsetřil, Wormald 2005</td>
<td>almost all random d-regular graphs.</td>
</tr>
<tr>
<td>Muthu, Narayanan, Subramaniann 2005</td>
<td>G is a partial 2-tree, an outerplanar graph, or a partial torus.</td>
</tr>
</tbody>
</table>
Known Results of $a'(G) \leq \Delta(G) + 1$

\[\Delta(G) \leq a'(G) \leq \Delta(G) + 1, \text{ for} \]

Xu, Chen, Mu 2006

G is a Halin graph and $G \neq K_4$.

Basavaraju, Sunil Chandran 2008

G is a 2-degenerate graph.

Hou, Wu, Liu, Liu 2009

G is planar and $\text{girth}(G) \geq 7$;
Known Results of $a'(G) = \Delta(G)$

$a'(G) = \Delta(G)$ if

<table>
<thead>
<tr>
<th>Xu, Chen, Mu 2006</th>
<th>G is a Halin graph and $\Delta(G) \geq 5$.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G is planar, $girth(G) \geq 16$, and $\Delta(G) \geq 3$.</td>
</tr>
<tr>
<td>G is an outerplanar graph and $\Delta(G) \geq 5$.</td>
</tr>
</tbody>
</table>
Main Results

- A graph operator preserving \(a'(G) \leq \Delta(G) + 1 \).
- \(\Delta(G) \leq a'(G) \leq \Delta(G) + 1 \) if \(G \) is a subdivision of a Halin graph and \(G \neq K_4 \).
- A graph operator preserving \(a'(G) = \Delta(G) \).
- \(a'(G) = \Delta(G) \) if \(G = T \cup C \) is a Halin graph, \(\Delta(G) \geq 6 \), each vertex in \(C \) belongs to a triangle, and \(G \) contains two triangles sharing a common edge.
Attaching a Cycle of Type \((2,1,1,1,2,3,1,1,4,1,2)\)
Attaching a Cycle of Type \((2,1,1,1,2,3,1,1,4,1,2)\)
Attaching a Cycle of Type \((2,1,1,1,2,3,1,1,4,1,2)\)
Attaching a Cycle of Type $(2,1,1,1,2,3,1,1,4,1,2)$
Attaching a Cycle of Type \((2,1,1,1,2,3,1,1,4,1,2)\)
A Graph Operator Preserving $a'(G) \leq \Delta(G) + 1$

Theorem

Assume that $S(G)$ is a graph obtained from G by attaching a cycle of type (l_1, l_2, \ldots, l_k), where $\sum_{i=1}^{k} l_i \geq 4$. Let $l_i \geq 2$ for some i or let $v_{j,1}$ have no neighbor in G for some j. If $a'(G) \leq \Delta(G) + 1$, so is $S(G)$.
If $a'(G) \leq \Delta(G) + 1$, Then $a'(S(G)) \leq \Delta(S(G)) + 1$

$l_i \geq 2$ for some i

adding a path
If \(a'(G) \leq \Delta(G) + 1 \), Then \(a'(S(G)) \leq \Delta(S(G)) + 1 \)

\(l_i \geq 2 \) for some \(i \)
adding a path
If $a'(G) \leq \Delta(G) + 1$, Then $a'(S(G)) \leq \Delta(S(G)) + 1$

$l_i \geq 2$ for some i
adding a path
If $a'(G) \leq \Delta(G) + 1$, Then $a'(S(G)) \leq \Delta(S(G)) + 1$

$l_i \geq 2$ for some i

adding a path
If \(a'(G) \leq \Delta(G) + 1 \), Then \(a'(S(G)) \leq \Delta(S(G)) + 1 \)

\(l_i \geq 2 \) for some \(i \)
adding a path
If $a'(G) \leq \Delta(G) + 1$, Then $a'(S(G)) \leq \Delta(S(G)) + 1$

$l_i \geq 2$ for some i
adding a path
vertices of degree 2
If \(a'(G) \leq \Delta(G) + 1 \), then \(a'(S(G)) \leq \Delta(S(G)) + 1 \).

\(v_{j,1} \) has no neighbor in \(G \) for some \(i \)

adding a path
If $a'(G) \leq \Delta(G) + 1$, Then $a'(S(G)) \leq \Delta(S(G)) + 1$

$\nu_{j,1}$ has no neighbor in G for some i

adding a path
If $a'(G) \leq \Delta(G) + 1$, Then $a'(S(G)) \leq \Delta(S(G)) + 1$

$v_{j,1}$ has no neighbor in G for some i adding a path
If $a'(G) \leq \Delta(G) + 1$, then $a'(S(G)) \leq \Delta(S(G)) + 1$.

$\nu_{j,1}$ has no neighbor in G for some i.

Adding a path.
A Graph Operator Preserving $a'(G) \leq \Delta(G) + 1$

Theorem

Assume that $S(G)$ is a graph obtained from G by attaching a cycle of type (l_1, l_2, \ldots, l_k), where $\sum_{i=1}^{k} l_i \geq 4$. Let $l_i \geq 2$ for some i or let $v_{j,1}$ have no neighbor in G for some j. If $a'(G) \leq \Delta(G) + 1$, so is $S(G)$.
A Halin graph H is a plane graph obtained by drawing a tree T in the plane, where T has no vertex of degree 2, then drawing a cycle C through all leaves in the plane.
Theorem

If \(G \) is a subdivision of a Halin graph and \(G \neq K_4 \), then \(a'(G) \leq \Delta(G) + 1 \).
Theorem

Assume that $S(G)$ is a graph obtained from G by attaching a cycle of type (l_1, l_2, \ldots, l_k), where $\Sigma_{i=1}^{k} l_i \geq 4$. Let $l_i \geq 3$ for some i, $l_j \geq 2$ for each j, and $\Delta(S(G)) \geq 6$. If $a'(G) = \Delta(G)$, so is $S(G)$.
Halin Graphs

Theorem

If $G = T \cup C$ is a Halin graph, $\Delta(G) \geq 6$, each vertex in C belongs to a triangle, and G contains two triangles sharing a common edge, then $a'(G) = \Delta(G)$.
Main Results

- A graph operator preserving $a'(G) \leq \Delta(G) + 1$.
- $\Delta(G) \leq a'(G) \leq \Delta(G) + 1$ if G is a subdivision of a Halin graph and $G \neq K_4$.
- A graph operator preserving $a'(G) = \Delta(G)$.
- $a'(G) = \Delta(G)$ if $G = T \cup C$ is a Halin graph, $\Delta(G) \geq 6$, each vertex in C belongs to a triangle, and G contains two triangles sharing a common edge.