Circular game chromatic number of graphs

Wensong Lin
Department of Mathematics, Southeast University, Nanjing 210096

Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University
and National Center for Theoretical Sciences, Taiwan

July 29, 2009
Suppose G is a graph and X is a set of colours. Alice and Bob take turns to colour the vertices of G with colours from X, with Alice having the first move.
Suppose G is a graph and X is a set of colours. Alice and Bob take turns to colour the vertices of G with colours from X, with Alice having the first move.

At each turn, a player colours an uncoloured vertex x with a legal colour from X, where a colour $a \in X$ is legal for x if no neighbour of x is coloured with colour a.
Suppose G is a graph and X is a set of colours. Alice and Bob take turns to colour the vertices of G with colours from X, with Alice having the first move.

At each turn, a player colours an uncoloured vertex x with a legal colour from X, where a colour $a \in X$ is legal for x if no neighbour of x is coloured with colour a.

The game ends if either all the vertices of G are coloured or there is an uncoloured vertex x which has no legal colour.
Suppose G is a graph and X is a set of colours. Alice and Bob take turns to colour the vertices of G with colours from X, with Alice having the first move.

At each turn, a player colours an uncoloured vertex x with a legal colour from X, where a colour $a \in X$ is legal for x if no neighbour of x is coloured with colour a.

The game ends if either all the vertices of G are coloured or there is an uncoloured vertex x which has no legal colour.

In the former case, Alice wins the game, and in the latter case Bob wins the game.
Suppose G is a graph and X is a set of colours. Alice and Bob take turns to colour the vertices of G with colours from X, with Alice having the first move.

At each turn, a player colours an uncoloured vertex x with a legal colour from X, where a colour $a \in X$ is legal for x if no neighbour of x is coloured with colour a.

The game ends if either all the vertices of G are coloured or there is an uncoloured vertex x which has no legal colour.

In the former case, Alice wins the game, and in the latter case Bob wins the game.

The **game chromatic number** $\chi_g(G)$ of G is the least number of colours contained in X so that Alice has a winning strategy for the colouring game on G with the colour set X.
The colouring game on planar graphs was first introduced by Steven Brams in 1981, and later the game was re-invented by Bodlaender in 1991, where the game chromatic number of an arbitrary graph is defined.
The colouring game on planar graphs was first introduced by Steven Brams in 1981, and later the game was re-invented by Bodlaender in 1991, where the game chromatic number of an arbitrary graph is defined.

The game chromatic number of various classes of graphs have been studied extensively in the literature.
The colouring game on planar graphs was first introduced by Steven Brams in 1981, and later the game was re-invented by Bodlaender in 1991, where the game chromatic number of an arbitrary graph is defined.

The game chromatic number of various classes of graphs have been studied extensively in the literature.

For a class \mathcal{K} of graphs, let $\chi_g(\mathcal{K}) = \max\{\chi_g(G) : G \in \mathcal{K}\}$.
The colouring game on planar graphs was first introduced by Steven Brams in 1981, and later the game was re-invented by Bodlaender in 1991, where the game chromatic number of an arbitrary graph is defined.

The game chromatic number of various classes of graphs have been studied extensively in the literature.

For a class \mathcal{K} of graphs, let $\chi_g(\mathcal{K}) = \max\{\chi_g(G) : G \in \mathcal{K}\}$.

Let \mathcal{P} be the class of planar graphs. It is now known that

$$8 \leq \chi_g(\mathcal{P}) \leq 17.$$
The colouring game on planar graphs was first introduced by Steven Brams in 1981, and later the game was re-invented by Bodlaender in 1991, where the game chromatic number of an arbitrary graph is defined.

The game chromatic number of various classes of graphs have been studied extensively in the literature.

For a class \mathcal{K} of graphs, let $\chi_g(\mathcal{K}) = \max\{\chi_g(G) : G \in \mathcal{K}\}$.

Let \mathcal{P} be the class of planar graphs. It is now known that

$$8 \leq \chi_g(\mathcal{P}) \leq 17.$$
Marking game and game colouring number

- Two players, Alice and Bob, alternately mark unmarked vertices of G. The game ends when all vertices are marked.
Two players, Alice and Bob, alternately mark unmarked vertices of G. The game ends when all vertices are marked.

For a vertex x of G, let $b(x)$ be the number of neighbours of x that are marked before x is marked.
Two players, Alice and Bob, alternately mark unmarked vertices of G. The game ends when all vertices are marked.

For a vertex x of G, let $b(x)$ be the number of neighbours of x that are marked before x is marked.

The score of the game is $1 + \max\{b(x) : x \in V(G)\}$. Alice’s goal is to minimize the score of the game, and Bob’s goal is to maximize the score.
Two players, Alice and Bob, alternately mark unmarked vertices of G. The game ends when all vertices are marked.

For a vertex x of G, let $b(x)$ be the number of neighbours of x that are marked before x is marked.

The score of the game is $1 + \max\{b(x) : x \in V(G)\}$. Alice’s goal is to minimize the score of the game, and Bob’s goal is to maximize the score.

The *game colouring number* $\text{col}_g(G)$ of G is the minimum s such that Alice has a strategy that ensures that the resulting score is at most s.
Two players, Alice and Bob, alternately mark unmarked vertices of G. The game ends when all vertices are marked.

For a vertex x of G, let $b(x)$ be the number of neighbours of x that are marked before x is marked.

The score of the game is $1 + \max\{b(x) : x \in V(G)\}$. Alice’s goal is to minimize the score of the game, and Bob’s goal is to maximize the score.

The *game colouring number* $\text{col}_g(G)$ of G is the minimum s such that Alice has a strategy that ensures that the resulting score is at most s.

For any graph G, $\chi_g(G) \leq \text{col}_g(G)$.
Two players, Alice and Bob, alternately mark unmarked vertices of G. The game ends when all vertices are marked.

For a vertex x of G, let $b(x)$ be the number of neighbours of x that are marked before x is marked.

The score of the game is $1 + \max \{ b(x) : x \in V(G) \}$. Alice’s goal is to minimize the score of the game, and Bob’s goal is to maximize the score.

The game colouring number $\text{col}_g(G)$ of G is the minimum s such that Alice has a strategy that ensures that the resulting score is at most s.

For any graph G, $\chi_g(G) \leq \text{col}_g(G)$.

The game colouring number itself is also of independent interest, has application to graph packing, and has been studied extensively in the literature.
Circular chromatic number

For a positive real number r, let $S(r)$ denote the circle of circumference r.

Wensong Lin Department of Mathematics, Southeast University, Nanjing 210096
Xuding Zhu Department of Applied Mathematics, National Sun Yat-sen University and National Center for Theoretical Sciences, Taiwan

Circular game chromatic number of graphs
Circular chromatic number

- For a positive real number r, let $S(r)$ denote the circle of circumference r.
- For any $x \in \mathbb{R}$, $[x]_r \in [0, r)$ denotes the remainder of x upon division by r.

Circular game chromatic number of graphs
Circular chromatic number

- For a positive real number \(r \), let \(S(r) \) denote the circle of circumference \(r \).
- For any \(x \in \mathbb{R} \), \([x]_r \in [0, r)\) denotes the remainder of \(x \) upon division by \(r \).
- For \(a, b \in S(r) \),
 \([a, b]_r = \{x \in S(r) : 0 \leq [x - a]_r \leq [b - a]_r\}\),
 \((a, b)_r = \{x \in S(r) : 0 < [x - a]_r < [b - a]_r\}\). The length of the interval \([a, b]_r\) is equal to \([b - a]_r\).
For a positive real number r, let $S(r)$ denote the circle of circumference r.

For any $x \in \mathbb{R}$, $[x]_r \in [0, r)$ denotes the remainder of x upon division by r.

For $a, b \in S(r)$, $[a, b]_r = \{x \in S(r) : 0 \leq [x - a]_r \leq [b - a]_r\}$, $(a, b)_r = \{x \in S(r) : 0 < [x - a]_r < [b - a]_r\}$. The length of the interval $[a, b]_r$ is equal to $[b - a]_r$.

Two points $a, b \in S(r)$ partition $S(r)$ into two arcs: $[a, b]_r$ and $[b, a]_r$. The distance between a and b, denoted by $|a - b|_r$, $\min\{[a - b]_r, [b - a]_r\} = \min\{|a - b|, r - |a - b|\}$.
Circular chromatic number

- For a positive real number r, let $S(r)$ denote the circle of circumference r.
- For any $x \in \mathbb{R}$, $[x]_r \in [0, r)$ denotes the remainder of x upon division by r.
- For $a, b \in S(r)$, $[a, b]_r = \{x \in S(r) : 0 \leq [x - a]_r \leq [b - a]_r\}$, $(a, b)_r = \{x \in S(r) : 0 < [x - a]_r < [b - a]_r\}$. The length of the interval $[a, b]_r$ is equal to $[b - a]_r$.
- Two points $a, b \in S(r)$ partition $S(r)$ into two arcs: $[a, b]_r$ and $[b, a]_r$. The distance between a and b, denoted by $|a - b|_r$, $\min\{[a - b]_r, [b - a]_r\} = \min\{|a - b|, r - |a - b|\}$.
- A circular r-colouring of G is a mapping $f : V(G) \rightarrow S(r)$ such that for any edge xy of G, $|f(x) - f(y)|_r \geq 1$.
Circular chromatic number

- For a positive real number r, let $S(r)$ denote the circle of circumference r.
- For any $x \in \mathbb{R}$, $[x]_r \in [0, r)$ denotes the remainder of x upon division by r.
- For $a, b \in S(r)$, $[a, b]_r = \{x \in S(r) : 0 \leq [x - a]_r \leq [b - a]_r\}$, $(a, b)_r = \{x \in S(r) : 0 < [x - a]_r < [b - a]_r\}$. The length of the interval $[a, b]_r$ is equal to $[b - a]_r$.
- Two points $a, b \in S(r)$ partition $S(r)$ into two arcs: $[a, b]_r$ and $[b, a]_r$. The distance between a and b, denoted by $|a - b|_r$, $\min\{[a - b]_r, [b - a]_r\} = \min\{|a - b|, r - |a - b|\}$.
- A circular r-colouring of G is a mapping $f : V(G) \rightarrow S(r)$ such that for any edge xy of G, $|f(x) - f(y)|_r \geq 1$.
- The circular chromatic number $\chi_c(G)$ of G is the least r for which G has a circular r-colouring.
Circular colouring game

- Given a graph G and a real number r, the *circular r-colouring game* on G is a two-person game played by Alice and Bob. The two players alternate their turns.

The game ends if either all vertices of G are coloured or there is an uncoloured vertex x that has no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game.

We need to specify who has the first move. We consider both Alice first version and Bob first version of circular colouring game.
Circular colouring game

Given a graph G and a real number r, the *circular r-colouring game on G* is a two-person game played by Alice and Bob. The two players alternate their turns.

At each turn, a player picks an uncoloured vertex x and assigns a legal colour $f(x) \in S(r)$ to x, where a colour $a \in S(r)$ is legal for an uncoloured vertex x if no colour from the interval $(a - 1, a + 1)_r$ is assigned to any neighbour of x in previous moves (by either player).
Given a graph G and a real number r, the *circular r-colouring game on G* is a two-person game played by Alice and Bob. The two players alternate their turns.

At each turn, a player picks an uncoloured vertex x and assigns a legal colour $f(x) \in S(r)$ to x, where a colour $a \in S(r)$ is legal for an uncoloured vertex x if no colour from the interval $(a - 1, a + 1)_r$ is assigned to any neighbour of x in previous moves (by either player).

The game ends if either all vertices of G are coloured or there is an uncoloured vertex x that has no legal colour.
Circular colouring game

- Given a graph G and a real number r, the circular r-colouring game on G is a two-person game played by Alice and Bob. The two players alternate their turns.

- At each turn, a player picks an uncoloured vertex x and assigns a legal colour $f(x) \in S(r)$ to x, where a colour $a \in S(r)$ is legal for an uncoloured vertex x if no colour from the interval $(a - 1, a + 1)_r$ is assigned to any neighbour of x in previous moves (by either player).

- The game ends if either all vertices of G are coloured or there is an uncoloured vertex x that has no legal colour.

- In the former case, Alice wins the game. In the latter case, Bob wins the game.
Given a graph G and a real number r, the \textit{circular r-colouring game on G} is a two-person game played by Alice and Bob. The two players alternate their turns.

At each turn, a player picks an uncoloured vertex x and assigns a legal colour $f(x) \in S(r)$ to x, where a colour $a \in S(r)$ is legal for an uncoloured vertex x if no colour from the interval $(a - 1, a + 1)_r$ is assigned to any neighbour of x in previous moves (by either player).

The game ends if either all vertices of G are coloured or there is an uncoloured vertex x that has no legal colour.

In the former case, Alice wins the game. In the latter case, Bob wins the game.

We need to specify who has the first move. We consider both Alice first version and Bob first version of circular colouring game.
For a graph G, let $R(G)$ be the set of real numbers r for which Alice has a winning strategy in the circular r-colouring game on G. Therefore, $\chi_{cg}(G) \geq \chi_c(G)$. Equality holds for K_1 and for stars: for $n \geq 1$, $\chi_{cg}(K_1, n) = \chi_c(K_1, n) = 2$.

Wensong Lin
Department of Mathematics, Southeast University, Nanjing 210096
Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University and National Center for Theoretical Sciences, Taiwan
Circular game chromatic number

- For a graph G, let $R(G)$ be the set of real numbers r for which Alice has a winning strategy in the circular r-colouring game on G.

- The **circular game chromatic number** $\chi_{cg}(G)$ of G is defined as

$$\chi_{cg}(G) = \inf R(G).$$
For a graph G, let $R(G)$ be the set of real numbers r for which Alice has a winning strategy in the circular r-colouring game on G.

The *circular game chromatic number* $\chi_{cg}(G)$ of G is defined as

$$\chi_{cg}(G) = \inf R(G).$$

Observe that if $r \geq 2\Delta(G)$, it is obvious that Alice has a winning strategy for the circular r-colouring game on G. So $R(G) \neq \emptyset$, and hence $\chi_{cg}(G)$ is well-defined.
For a graph G, let $R(G)$ be the set of real numbers r for which Alice has a winning strategy in the circular r-colouring game on G.

The *circular game chromatic number* $\chi_{cg}(G)$ of G is defined as

$$\chi_{cg}(G) = \inf R(G).$$

Observe that if $r \geq 2\Delta(G)$, it is obvious that Alice has a winning strategy for the circular r-colouring game on G. So $R(G) \neq \emptyset$, and hence $\chi_{cg}(G)$ is well-defined.

If Alice wins the circular r-colouring game, then the players produce an r-circular colouring of G. Therefore

$$\chi_{cg}(G) \geq \chi_c(G).$$
For a graph G, let $R(G)$ be the set of real numbers r for which Alice has a winning strategy in the circular r-colouring game on G.

The **circular game chromatic number** $\chi_{cg}(G)$ of G is defined as

$$\chi_{cg}(G) = \inf R(G).$$

Observe that if $r \geq 2\Delta(G)$, it is obvious that Alice has a winning strategy for the circular r-colouring game on G. So $R(G) \neq \emptyset$, and hence $\chi_{cg}(G)$ is well-defined.

If Alice wins the circular r-colouring game, then the players produce an r-circular colouring of G. Therefore $\chi_{cg}(G) \geq \chi_c(G)$.

Equality holds for K_1 and for stars: for $n \geq 1$, $\chi_{cg}(K_{1,n}) = \chi_c(K_{1,n}) = 2$.

Wensong Lin
Department of Mathematics, Southeast University, Nanjing 210096

Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University and National Center for Theoretical Sciences, Taiwan
Theorem 1
For any graph G, $\chi_{cg}(G) \leq 2\text{col}_g(G) - 2$.

Theorem 2
For any graph G, $\chi_{Bcg}(G) \leq 2\text{col}_B(G) - 2$.

Lemma 1
Let G be a connected graph with at least one edge. If $G \neq K_1, n$ for any positive integer n, then $\chi_{cg}(G) \geq 4$.

$\chi_{cg}(P_n) = 4$ for $n \geq 4$ and $\chi_{Bcg}(P_n) = 4$ for $n \geq 5$ and $\chi_{Bcg}(C_4) = 2$ and $\chi_{Bcg}(C_5) = 3$.
\(\chi_{cg}(G) \) and \(\text{col}_g(G) \)

Theorem 1

For any graph \(G \), \(\chi_{cg}(G) \leq 2\text{col}_g(G) - 2. \)

Theorem 2

For any graph \(G \), \(\chi^B_{cg}(G) \leq 2\text{col}_g^B(G) - 2. \)
Theorem 1
For any graph G, $\chi_{cg}(G) \leq 2\text{col}_g(G) - 2$.

Theorem 2
For any graph G, $\chi_{Bcg}(G) \leq 2\text{col}_B^g(G) - 2$.

Lemma 1
Let G be a connected graph with at least one edge. If $G \neq K_{1,n}$ for any positive integer n, then $\chi_{cg}(G) \geq 4$.
\(\chi_{cg}(G) \) and \(\text{col}_g(G) \)

Theorem 1
For any graph \(G \), \(\chi_{cg}(G) \leq 2\text{col}_g(G) - 2 \).

Theorem 2
For any graph \(G \), \(\chi_{cg}^B(G) \leq 2\text{col}_g^B(G) - 2 \).

Lemma 1
Let \(G \) be a connected graph with at least one edge. If \(G \neq K_{1,n} \) for any positive integer \(n \), then \(\chi_{cg}(G) \geq 4 \).

- \(\chi_{cg}(P_n) = 4 \) for \(n \geq 4 \) and \(\chi_{cg}(C_n) = 4 \) for \(n \geq 3 \).
Theorem 1

For any graph G, $\chi_{cg}(G) \leq 2\text{col}_g(G) - 2$.

Theorem 2

For any graph G, $\chi_{cg}^B(G) \leq 2\text{col}_g^B(G) - 2$.

Lemma 1

Let G be a connected graph with at least one edge. If $G \neq K_{1,n}$ for any positive integer n, then $\chi_{cg}(G) \geq 4$.

- $\chi_{cg}(P_n) = 4$ for $n \geq 4$ and $\chi_{cg}(C_n) = 4$ for $n \geq 3$.
- $\chi_{cg}^B(P_n) = 4$ for $n \geq 5$ and $\chi_{cg}^B(C_n) = 4$ for $n \geq 7$.
- $\chi_{cg}^B(P_4) = \chi_{cg}^B(C_4) = \chi_{cg}^B(C_6) = 2$ and $\chi_{cg}^B(C_5) = \chi_{cg}^B(C_3) = 3$.
For a class \mathcal{K} of graphs, let

$$\text{col}_g(\mathcal{K}) = \max\{\text{col}_g(G) : G \in \mathcal{K}\}.$$
$$\chi_{cg}(\mathcal{K}) = \sup\{\chi_{cg}(G) : G \in \mathcal{K}\}.$$

Recall that \mathcal{P} is the class of planar graphs. Let \mathcal{F} be the class of forests, \mathcal{Q} be the class of outerplanar graphs and $\mathcal{P}\mathcal{K}_k$ be the class of partial k-trees.

It is known that $\text{col}_g(\mathcal{F}) = 4$, $\text{col}_g(\mathcal{Q}) = 7$, $\text{col}_g(\mathcal{P}) \leq 17$ and $\text{col}_g(\mathcal{P}\mathcal{K}_k) = 3k + 2$ for $k \geq 2$.
Corollary 1

For the classes $\mathcal{F}, \mathcal{Q}, \mathcal{P}, \mathcal{PK}_k$ of graphs defined above,

$$\chi_{cg}(\mathcal{F}) \leq 6, \quad \chi_{cg}(\mathcal{Q}) \leq 12, \quad \chi_{cg}(\mathcal{P}) \leq 32, \quad \chi_{cg}(\mathcal{PK}_k) \leq 6k + 2.$$
Corollary

Corollary 1
For the classes $\mathcal{F}, Q, P, \mathcal{PK}_k$ of graphs defined above,

$$\chi_{cg}(\mathcal{F}) \leq 6, \ \chi_{cg}(Q) \leq 12, \ \chi_{cg}(P) \leq 32, \ \chi_{cg}(\mathcal{PK}_k) \leq 6k + 2.$$

Theorem 3
For any positive real number ε, there is a tree T with $\chi_{cg}(T) > 6 - \varepsilon$. Hence $\chi_{cg}(\mathcal{F}) = 6$.

Wensong Lin Department of Mathematics, Southeast University, Nanjing 210096
Xuding Zhu Department of Applied Mathematics, National Sun Yat-sen University and National Center for Theoretical Sciences, Taiwan
A colouring of the vertices of a graph G is *acyclic* if it is a proper colouring such that no cycle of G is 2-coloured.

The minimum number of colours needed is the *acyclic chromatic number* of a graph G, denoted by $\chi_a(G)$.
A colouring of the vertices of a graph G is *acyclic* if it is a proper colouring such that no cycle of G is 2-coloured.

The minimum number of colours needed is the *acyclic chromatic number* of a graph G, denoted by $\chi_a(G)$.

$$\chi_g(G) \leq \chi_a(G)(\chi_a(G) + 1).$$
A colouring of the vertices of a graph G is acyclic if it is a proper colouring such that no cycle of G is 2-coloured.

The minimum number of colours needed is the acyclic chromatic number of a graph G, denoted by $\chi_a(G)$.

$$\chi_g(G) \leq \chi_a(G)(\chi_a(G) + 1).$$

Theorem 4

For any graph G, $\chi_{cg}(G) \leq \chi_a(G)(2\chi_a(G) + 2)$ and $\chi_{cg}^B(G) \leq \chi_a(G)(2\chi_a(G) + 2)$.
The complete graphs

For a positive integer n, let

$$
\varphi(n) = \begin{cases}
4k + 1, & \text{if } n = 3k + 1, \\
4k + 2, & \text{if } n = 3k + 2, \\
4k + 4, & \text{if } n = 3k + 3.
\end{cases}
$$

$$
\psi(n) = \begin{cases}
4k, & \text{if } n = 3k + 1, \\
4k + 2, & \text{if } n = 3k + 2, \\
4k + 3, & \text{if } n = 3k + 3.
\end{cases}
$$

Theorem 5

$$
\chi_{cg}(K_n) = \varphi(n) \text{ and } \chi_{cg}^B(K_n) = \psi(n).
$$
Some open questions - 1

It is known that $\chi(G) = \lceil \chi_c(G) \rceil$. Is there any relation between $\chi_{cg}(G)$ and $\chi_g(G)$?

Question 1

Are there functions $f, g : N \to R$ such that $g(\chi_g(G)) \leq \chi_{cg}(G) \leq f(\chi_g(G))$?

Question 2

Let r and r' be positive real numbers with $r < r'$. Suppose Alice has a winning strategy for the circular r-colouring game. Is it true that Alice also has a winning strategy for the circular r'-colouring game?
It is known that $\chi(G) = \lceil \chi_c(G) \rceil$. Is there any relation between $\chi_{cg}(G)$ and $\chi_g(G)$?

Question 1

Are there functions $f, g : \mathbb{N} \to \mathbb{R}$ such that $g(\chi_g(G)) \leq \chi_{cg}(G) \leq f(\chi_g(G))$?
Some open questions - 1

It is known that $\chi(G) = \lceil \chi_c(G) \rceil$. Is there any relation between
$\chi_{cg}(G)$ and $\chi_g(G)$?

Question 1

Are there functions $f, g : \mathbb{N} \to \mathbb{R}$ such that $g(\chi_g(G)) \leq \chi_{cg}(G) \leq f(\chi_g(G))$?

Question 2

Let r and r' be positive real numbers with $r < r'$. Suppose Alice has a winning strategy for the circular r-colouring game. Is it true that Alice also has a winning strategy for the circular r'-colouring game?
Question 3

If $\chi_{cg}(G) = t$, is it true that Alice has a winning strategy for the circular t-colouring game on G?
Question 3

If $\chi_{cg}(G) = t$, is it true that Alice has a winning strategy for the circular t-colouring game on G?

By Lemma 1, it is not difficult to see that no graph has circular game chromatic number in the open interval $(2, 4)$.

Wensong Lin
Department of Mathematics, Southeast University, Nanjing 210096

Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University and National Center for Theoretical Sciences, Taiwan

Circular game chromatic number of graphs
Some open questions - 2

Question 3
If $\chi_{cg}(G) = t$, is it true that Alice has a winning strategy for the circular t-colouring game on G?

By Lemma 1, it is not difficult to see that no graph has circular game chromatic number in the open interval $(2, 4)$.

Question 4
What are the possible value of $\chi_{cg}(G)$ for all graphs G?

Wensong Lin
Department of Mathematics, Southeast University, Nanjing 210096
Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University and National Center for Theoretical Sciences, Taiwan
Circular game chromatic number of graphs
Some open questions - 2

Question 3
If $\chi_{cg}(G) = t$, is it true that Alice has a winning strategy for the circular t-colouring game on G?

By Lemma 1, it is not difficult to see that no graph has circular game chromatic number in the open interval $(2, 4)$.

Question 4
What are the possible value of $\chi_{cg}(G)$ for all graphs G?

$$\chi_{cg}(\mathcal{F}) \leq 6, \ \chi_{cg}(Q) \leq 12, \ \chi_{cg}(P) \leq 32, \ \chi_{cg}(PK_k) \leq 6k + 2.$$

It will be interesting to improve those bounds in Corollary 1 for these classes of graphs other than forests.
Thanks!
T. Bartnicki, J. Grytczuk, H. A. Kierstead, and X. Zhu,
The map colouring game.

H. L. Bodlaender,
On the complexity of some coloring games,

T. Dinski and X. Zhu,
A bound for the game chromatic number of graphs,

M. Gardner,
Mathematical games,
Scientific American, April, 1981.

D. J. Guan and X. Zhu,
Game chromatic number of outerplanar graphs,

A. Vince,

Star chromatic number,

J. Wu and X. Zhu,

Lower bounds for the game colouring number of partial k-trees and planar graphs,

X. Zhu,
Recent developments in circular colouring of graphs,