On \((d, 1)\)-Total Numbers of Graphs

Ko-Wei Lih

Institute of Mathematics
Academia Sinica
Taipei, Taiwan

A joint work with
Daphne Der-Fen Liu and Weifan Wang

The Fifth Cross-Strait Conference of Graph Theory and Combinatorics
Nankai, Tianjin, China
July 30, 2009
All graphs mentioned in this talk are finite without self-loops or parallel edges.

Every graph is assumed to have at least one edge.

\[f(x) - f(y) \geq \begin{cases}
1 & \text{if vertices } x \text{ and } y \text{ are adjacent;} \\
1 & \text{if edges } x \text{ and } y \text{ are adjacent;} \\
d & \text{if vertex } x \text{ and edge } y \text{ are incident.}
\end{cases} \]
(\(d, 1\))-total labeling

All graphs mentioned in this talk are finite without self-loops or parallel edges.

Every graph is assumed to have at least one edge.

Definition

A \((d, 1)\)-total labeling of a graph \(G = (V, E)\) is a function \(f\) from \(V(G) \cup E(G)\) to nonnegative integers such that

\[
|f(x) - f(y)| \geq \begin{cases}
1 & \text{if vertices } x \text{ and } y \text{ are adjacent;} \\
1 & \text{if edges } x \text{ and } y \text{ are adjacent;} \\
d & \text{if vertex } x \text{ and edge } y \text{ are incident.}
\end{cases}
\]
A \((d, 1)\)-total labeling taking values in the set \(\{0, 1, \ldots, k\}\) is called a \([k]-(d, 1)\)-total labeling.

The span of a \((d, 1)\)-total labeling is the maximum difference between two labels.

The minimum \(k\) among all \([k]-(d, 1)\)-total labellings of \(G\), denoted \(\lambda^T_d(G)\), is called the \((d, 1)\)-total number of \(G\).

\(\lambda^T_2(G)\) is the minimum span among all \(L(2, 1)\)-labelings of the subdivision graph \(G^S\) of a graph \(G\).
A $(d, 1)$-total labeling taking values in the set \(\{0, 1, \ldots, k\} \) is called a \([k]-(d, 1)-total\ labeling\).

The span of a $(d, 1)$-total labeling is the maximum difference between two labels.

The minimum \(k \) among all \([k]-(d, 1)-total\ labellings\) of \(G \), denoted \(\lambda^T_d(G) \), is called the $(d, 1)$-total number of \(G \).
(\(d, 1\))-total labeling

Definition

- A \((d, 1)\)-total labeling taking values in the set \(\{0, 1, \ldots, k\}\) is called a \([k]-(d, 1)\)-total labeling.

- The *span* of a \((d, 1)\)-total labeling is the maximum difference between two labels.

- The minimum \(k\) among all \([k]-(d, 1)\)-total labellings of \(G\), denoted \(\lambda^T_d(G)\), is called the \((d, 1)\)-total number of \(G\).

\(\lambda^T_2(G)\) is the minimum span among all \(L(2, 1)\)-labelings of the subdivision graph \(G^S\) of a graph \(G\).
A \((d, 1)\)-total labeling taking values in the set \(\{0, 1, \ldots, k\}\) is called a \([k]-(d, 1)\)-total labeling.

The span of a \((d, 1)\)-total labeling is the maximum difference between two labels.

The minimum \(k\) among all \([k]-(d, 1)\)-total labellings of \(G\), denoted \(\lambda^T_d(G)\), is called the \((d, 1)\)-total number of \(G\).

\(\lambda^T_2(G)\) is the minimum span among all \(L(2, 1)\)-labelings of the subdivision graph \(G^S\) of a graph \(G\).
Let $\Delta(G)$ denote the maximum degree of the graph G. Havet and Yu (2002) proposed the following conjecture.

\[(d, 1)\text{-Total Labeling Conjecture}\]

\[\lambda_d^T(G) \leq \min\{\Delta(G) + 2d - 1, 2\Delta(G) + d - 1\}.\]

Note that $\lambda_d^T(G) + 1$ is equal to the total chromatic number $\chi''(G)$ of the graph G.

When $d = 1$, the $(d, 1)$-total labeling conjecture is equivalent to the Total Coloring Conjecture proposed by Behzad (1965) and independently by Vizing (1968).
Let $\Delta(G)$ denote the maximum degree of the graph G. Havet and Yu (2002) proposed the following conjecture.

$(d, 1)$-Total Labeling Conjecture

$$\lambda^T_d(G) \leq \min\{\Delta(G) + 2d - 1, 2\Delta(G) + d - 1\}.$$

Note that $\lambda^T_1(G) + 1$ is equal to the *total chromatic number* $\chi''(G)$ of the graph G.

When $d = 1$, the $(d, 1)$-total labeling conjecture is equivalent to the *Total Coloring Conjecture* proposed by Behzad (1965) and independently by Vizing (1968).
Let $\Delta(G)$ denote the maximum degree of the graph G. Havet and Yu (2002) proposed the following conjecture.

$(d, 1)$-Total Labeling Conjecture

$$\lambda_d^T(G) \leq \min\{\Delta(G) + 2d - 1, 2\Delta(G) + d - 1\}.$$

Note that $\lambda_1^T(G) + 1$ is equal to the total chromatic number $\chi''(G)$ of the graph G.

When $d = 1$, the $(d, 1)$-total labeling conjecture is equivalent to the Total Coloring Conjecture proposed by Behzad (1965) and independently by Vizing (1968).
Definition

Let $\chi(G)$, or $\chi'(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors.

Definition

- If each edge e of G is assigned a list $L(e)$ of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable.

- The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying $|L(e)| = k$ for all $e \in E(G)$.

- Let $\chi'_l(G)$ denote the smallest k such that G is k-edge-choosable.
Definition

Let $\chi(G)$, or $\chi'(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors.

Definition

If each edge e of G is assigned a list $L(e)$ of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable.

The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying $|L(e)| = k$ for all $e \in E(G)$.

Let $\chi'_k(G)$ denote the smallest k such that G is k-edge-choosable.
Edge choosability

Definition
Let $\chi(G)$, or $\chi'(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors.

Definition
- If each edge e of G is assigned a list $L(e)$ of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable.
- The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying $|L(e)| = k$ for all $e \in E(G)$.
- Let $\chi'_l(G)$ denote the smallest k such that G is k-edge-choosable.
Edge choosability

Definition

Let $\chi(G)$, or $\chi'(G)$, denote the smallest number of colors needed to color the vertices, respectively the edges, of G so that adjacent elements receive distinct colors.

Definition

- If each edge e of G is assigned a list $L(e)$ of possible colors and G has a proper edge-coloring ϕ such that $\phi(e) \in L(e)$ for all $e \in E(G)$, then we say that G is L-edge-colorable.
- The graph G is said to be k-edge-choosable if it is L-edge-colorable for every assignment L satisfying $|L(e)| = k$ for all $e \in E(G)$.
- Let $\chi'_l(G)$ denote the smallest k such that G is k-edge-choosable.
An upper bound

The following lemma was proved by Havet and Yu (2008) and the case for $d = 2$ was proved by Wittlesey, Georges, and Mauro (1995).

Lemma.

\[\lambda^T_d(G) \leq \chi(G) + \chi'(G) + d - 2. \]

\[\lambda^T_d(G) \leq 2\Delta(G) + d - 1. \]

Theorem.

\[\lambda^T_d(G) \leq \chi'_l(G) + 4d - 3. \]
An upper bound

The following lemma was proved by Havet and Yu (2008) and the case for $d = 2$ was proved by Wittlesey, Georges, and Mauro (1995).

Lemma.

$\lambda^T_d(G) \leq \chi(G) + \chi'(G) + d - 2.$

$\lambda^T_d(G) \leq 2\Delta(G) + d - 1.$

Theorem.

$\lambda^T_d(G) \leq \chi'_l(G) + 4d - 3.$
An upper bound

Theorem. (Borodin, Kostochka, and Woodall (1997))
\[\chi'_l(G) \leq \left\lfloor \frac{3}{2} \Delta(G) \right\rfloor. \]

Corollary.
\[\lambda^T_d(G) \leq \left\lfloor \frac{3}{2} \Delta(G) \right\rfloor + 4d - 3. \]
An upper bound

Theorem. (Borodin, Kostochka, and Woodall (1997))

\[\chi'_l(G) \leq \lfloor \frac{3}{2} \Delta(G) \rfloor. \]

Corollary.

\[\lambda^T_d(G) \leq \lfloor \frac{3}{2} \Delta(G) \rfloor + 4d - 3. \]
An upper bound conjecture

Theorem.

Let G be a graph with $\chi(G) = k$ and $\chi'(G) = k'$. If $k \geq 3d$, then

$$\lambda^T_d(G) \leq s + k' - 1,$$

where s is equal to $4d - 2$ when $k = 3d$ or $3d + 1$, and equal to $\lceil (k + 9d - 5)/3 \rceil$ when $k \geq 3d + 2$.

This theorem implies that the following conjecture holds when $\chi(G) \geq 3d$.

Conjecture.

Let a graph G satisfy $\chi(G) > \max\{2, d\}$. Then

$$\lambda^T_d(G) \leq \chi(G) + \chi'(G) + d - 3.$$
An upper bound conjecture

Theorem.
Let G be a graph with $\chi(G) = k$ and $\chi'(G) = k'$. If $k \geq 3d$, then $\lambda_d^T(G) \leq s + k' - 1$, where s is equal to $4d - 2$ when $k = 3d$ or $3d + 1$, and equal to $\lceil (k + 9d - 5)/3 \rceil$ when $k \geq 3d + 2$.

This theorem implies that the following conjecture holds when $\chi(G) \geq 3d$.

Conjecture.
Let a graph G satisfy $\chi(G) > \max\{2, d\}$. Then

$$\lambda_d^T(G) \leq \chi(G) + \chi'(G) + d - 3.$$
An upper bound conjecture

Theorem.

Let G be a graph with $\chi(G) = k$ and $\chi'(G) = k'$. If $k \geq 3d$, then $\lambda^T_d(G) \leq s + k' - 1$, where s is equal to $4d - 2$ when $k = 3d$ or $3d + 1$, and equal to $\lceil (k + 9d - 5)/3 \rceil$ when $k \geq 3d + 2$.

This theorem implies that the following conjecture holds when $\chi(G) \geq 3d$.

Conjecture.

Let a graph G satisfy $\chi(G) > \max\{2, d\}$. Then

$$\lambda^T_d(G) \leq \chi(G) + \chi'(G) + d - 3.$$
An upper bound conjecture

The known values of $\lambda_d^T(K_n)$ computed by Havet and Yu supports the above conjecture.

Corollary.

Let G be a bipartite graph. Then $\Delta(G) + d - 1 \leq \lambda_d^T(G) \leq \Delta(G) + d$ and $\lambda_d^T(G) = \Delta(G) + d$ when $d \geq \Delta(G)$ or G is regular.

Since $\chi'(G) = \Delta(G)$ for a bipartite graph G, a consequence of this corollary is $\lambda_d^T(G) = \Delta(G) + d = \chi(G) + \chi'(G) + d - 2$ for a bipartite regular graph G. This together with $\lambda_4^T(K_4) = 9$ show that the assumption $\chi(G) > \max\{2, d\}$ cannot be removed.
An upper bound conjecture

The known values of $\lambda_d^T(K_n)$ computed by Havet and Yu supports the above conjecture.

Corollary.

Let G be a bipartite graph. Then $\Delta(G) + d - 1 \leq \lambda_d^T(G) \leq \Delta(G) + d$ and $\lambda_d^T(G) = \Delta(G) + d$ when $d \geq \Delta(G)$ or G is regular.

Since $\chi'(G) = \Delta(G)$ for a bipartite graph G, a consequence of this corollary is $\lambda_d^T(G) = \Delta(G) + d = \chi(G) + \chi'(G) + d - 2$ for a bipartite regular graph G. This together with $\lambda_4^T(K_4) = 9$ show that the assumption $\chi(G) > \max\{2, d\}$ cannot be removed.
An upper bound conjecture

The known values of $\lambda_d^T(K_n)$ computed by Havet and Yu supports the above conjecture.

Corollary.

Let G be a bipartite graph. Then $\Delta(G) + d - 1 \leq \lambda_d^T(G) \leq \Delta(G) + d$ and $\lambda_d^T(G) = \Delta(G) + d$ when $d \geq \Delta(G)$ or G is regular.

Since $\chi'(G) = \Delta(G)$ for a bipartite graph G, a consequence of this corollary is $\lambda_d^T(G) = \Delta(G) + d = \chi(G) + \chi'(G) + d - 2$ for a bipartite regular graph G. This together with $\lambda_4^T(K_4) = 9$ show that the assumption $\chi(G) > \max\{2, d\}$ cannot be removed.
Lemma.

(1) $\lambda^T_d(G) \geq \Delta(G) + d - 1$.
(2) If $\lambda^T_d(G) = \Delta(G) + d - 1$, then each vertex of maximum degree is labeled with 0 or $\Delta(G) + d - 1$ in any $[\Delta(G) + d - 1]$-$(d, 1)$-total labeling.

Theorem

The following statements are equivalent.
(1) $m \geq \min\{2n, n + 2d - 1\}$ and $m \geq n + d$.
(2) There exists an $[m + d - 1]$-$(d, 1)$-total labeling f for $K_{m,n}$ such that $f(x) = 0$ for all $x \in X$, or $f(x) = m + d - 1$ for all $x \in X$.

Ko-Wei Lih

On $(d, 1)$-Total Numbers of Graphs
Complete bipartite graphs

Lemma.

(1) $\lambda_d^T(G) \geq \Delta(G) + d - 1$.
(2) If $\lambda_d^T(G) = \Delta(G) + d - 1$, then each vertex of maximum degree is labeled with 0 or $\Delta(G) + d - 1$ in any $[\Delta(G) + d - 1]$-$(d, 1)$-total labeling.

Theorem

The following statements are equivalent.
(1) $m \geq \min\{2n, n + 2d - 1\}$ and $m \geq n + d$.
(2) There exists an $[m + d - 1]$-$(d, 1)$-total labeling f for $K_{m,n}$ such that $f(x) = 0$ for all $x \in X$, or $f(x) = m + d - 1$ for all $x \in X$.
Complete bipartite graphs

Theorem

If $2n \leq m < n + d$, then $\lambda_d^T(K_{m,n}) = m + d$.

Theorem

Suppose that $m < \min\{2n, n + 2d - 1\}$ and $\lambda_d^T(K_{m,n}) = m + d - 1$. Then all the following statements hold.

1. $m \geq 3d + 1$.
2. $(n - m + 3d - 1)(2n - m) \leq nd$.
3. $m \geq n + d$.
4. $n/m \leq (\alpha + 1)/(\alpha + 2)$, where $\alpha = \lfloor (m - d - 2)/(2d - 1) \rfloor$.

Corollary

If $m < n + d$, then $\lambda_d^T(K_{m,n}) = m + d$.
Complete bipartite graphs

Theorem
If $2n \leq m < n + d$, then $\lambda_d^T(K_{m,n}) = m + d$.

Theorem
Suppose that $m < \min\{2n, n + 2d - 1\}$ and $\lambda_d^T(K_{m,n}) = m + d - 1$. Then all the following statements hold.
(1) $m \geq 3d + 1$.
(2) $(n - m + 3d - 1)(2n - m) \leq nd$.
(3) $m \geq n + d$.
(4) $n/m \leq (\alpha + 1)/(\alpha + 2)$, where $\alpha = \lfloor (m - d - 2)/(2d - 1) \rfloor$.

Corollary
If $m < n + d$, then $\lambda_d^T(K_{m,n}) = m + d$.
Theorem

If $2n \leq m < n + d$, then $\lambda_d^T(K_{m,n}) = m + d$.

Theorem

Suppose that $m < \min\{2n, n + 2d - 1\}$ and $\lambda_d^T(K_{m,n}) = m + d - 1$. Then all the following statements hold.

1. $m \geq 3d + 1$.
2. $(n - m + 3d - 1)(2n - m) \leq nd$.
3. $m \geq n + d$.
4. $n/m \leq (\alpha + 1)/(\alpha + 2)$, where $\alpha = \lfloor (m - d - 2)/(2d - 1) \rfloor$.

Corollary

If $m < n + d$, then $\lambda_d^T(K_{m,n}) = m + d$.
Theorem

Let $1 \leq n \leq m$. Then

$$\lambda_1^T(K_{m,n}) = \chi''(K_{m,n}) - 1 = m + \delta_{m,n},$$

where $\delta_{m,n}$ denotes the Kronecker delta, i.e., its value is 1 if $m = n$ and is 0 otherwise.
Theorem

Let $1 \leq n \leq m$. Then

$$\lambda_2^T(K_{m,n}) = \begin{cases}
 m + 2 & \text{if } m \leq n + 1, \text{ or } \\
 m + 1 & \text{otherwise.}
\end{cases}$$
Theorem

Let $1 \leq n \leq m$. Then

$$\lambda_3^T(K_{m,n}) = \begin{cases}
 m + 3 & \text{if } m \leq n + 2, \text{ or} \\
 m = n + 3 \text{ and } n \geq 4, \text{ or} \\
 m = n + 4 \text{ and } n = 5, 9, 10, 13, 14, 15; \\
 m + 2 & \text{otherwise.}
\end{cases}$$
When \(n \) is one of the numbers 6, 7, 8, 11, 12, or 16, an \([n + 6]-(3, 1)\)-total labeling for \(K_{n+4,n} \) is given below by a table. The notation used is as follows. The label of the \(i \)-th row is assigned to the vertex \(x_i \in X \). The label of the \(j \)-th column is assigned to the vertex \(y_j \in Y \). The label at the \((i, j)\) cell is assigned to the edge \(x_iy_j \).

\[
\begin{array}{cccccccccc}
K_{10,6} & 6 & 6 & 9 & 9 & 11 & 11 & 1 & 1 & 1 & 1 \\
12 & 2 & 0 & 1 & 3 & 5 & 4 & 7 & 8 & 9 & 6 \\
12 & 3 & 1 & 0 & 2 & 6 & 5 & 9 & 4 & 8 & 7 \\
12 & 9 & 2 & 3 & 0 & 1 & 6 & 8 & 7 & 4 & 5 \\
0 & 10 & 3 & 4 & 6 & 8 & 7 & 12 & 11 & 5 & 9 \\
0 & 11 & 9 & 5 & 4 & 7 & 3 & 10 & 12 & 6 & 8 \\
0 & 12 & 10 & 6 & 5 & 3 & 8 & 11 & 9 & 7 & 4 \\
\end{array}
\]
$K_{11,7}$, and $K_{12,8}$

<table>
<thead>
<tr>
<th>$K_{11,7}$</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>12</th>
<th>12</th>
<th>12</th>
<th>12</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>10</td>
<td>13</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$K_{12,8}$</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>13</th>
<th>13</th>
<th>13</th>
<th>13</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
$K_{15,11}$ and $K_{16,12}$

<table>
<thead>
<tr>
<th>$K_{15,11}$</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>11</th>
<th>11</th>
<th>11</th>
<th>11</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>16</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>17</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td>17</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>15</td>
<td>7</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>12</td>
<td>17</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>15</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>8</td>
<td>16</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>11</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>4</td>
<td>14</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$K_{16,12}$</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>12</th>
<th>12</th>
<th>12</th>
<th>12</th>
<th>17</th>
<th>17</th>
<th>17</th>
<th>17</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>16</td>
<td>5</td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>17</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>17</td>
<td>14</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>17</td>
<td>18</td>
<td>14</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>16</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>10</td>
<td>17</td>
<td>18</td>
<td>3</td>
<td>9</td>
<td>8</td>
<td>15</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>11</td>
<td>18</td>
<td>17</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>13</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>8</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>14</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>0</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Ko-Wei Lih
On $(d, 1)$-Total Numbers of Graphs
$K_{20,16}$

<table>
<thead>
<tr>
<th>$K_{20,16}$</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>11</th>
<th>11</th>
<th>11</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>16</th>
<th>21</th>
<th>21</th>
<th>21</th>
<th>21</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>18</td>
<td>14</td>
<td>13</td>
<td>21</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>22</td>
<td>5</td>
<td>19</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>21</td>
<td>19</td>
<td>15</td>
<td>14</td>
<td>22</td>
<td>5</td>
<td>20</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>21</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>17</td>
<td>20</td>
<td>7</td>
<td>3</td>
<td>22</td>
<td>5</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>22</td>
<td>17</td>
<td>16</td>
<td>3</td>
<td>7</td>
<td>21</td>
<td>18</td>
<td>4</td>
<td>20</td>
<td>5</td>
<td>19</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>3</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>5</td>
<td>21</td>
<td>22</td>
<td>4</td>
<td>18</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>9</td>
<td>22</td>
<td>18</td>
<td>16</td>
<td>20</td>
<td>15</td>
<td>19</td>
<td>6</td>
<td>8</td>
<td>21</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>18</td>
<td>20</td>
<td>17</td>
<td>22</td>
<td>19</td>
<td>21</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>13</td>
<td>12</td>
<td>15</td>
<td>5</td>
<td>16</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>11</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td>22</td>
<td>8</td>
<td>12</td>
<td>9</td>
<td>20</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>16</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>12</td>
<td>3</td>
<td>19</td>
<td>4</td>
<td>18</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>17</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>16</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>14</td>
<td>4</td>
<td>11</td>
<td>15</td>
<td>10</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>14</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>13</td>
<td>19</td>
<td>11</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>13</td>
<td>11</td>
<td>16</td>
<td>14</td>
<td>19</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>19</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>17</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>1</td>
<td>8</td>
<td>19</td>
<td>6</td>
<td>14</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>17</td>
<td>4</td>
<td>19</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>17</td>
<td>13</td>
<td>12</td>
<td>2</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>
Thank you for your attention.