Roman domination on 2-connected graphs

Gerard J. Chang
Department of Mathematics
National Taiwan University
(joint work with Chun-Hung Liu)

June, 2009
Roman domination on 2-connected graphs

Definition

1. A Roman dominating function of a graph G is a function $f : V(G) \rightarrow \{0, 1, 2\}$ such that whenever $f(v) = 0$, there exists a vertex u adjacent to v such that $f(u) = 2$.

2. The weight of f is $w(f) = \sum_{v \in V(G)} f(v)$.

3. The Roman domination number $\gamma_R(G)$ of G is the minimum weight among all Roman dominating functions of G.
Roman domination on 2-connected graphs

Introduction

Origin

In ancient Roma, Emperor Constantine would deploy armies on cities. For safety, every city which has no army in it must has a neighboring city with two armies.
Roman domination on 2-connected graphs

Introduction

Origin

In ancient Roma, Emperor Constantine would deploy armies on cities. For safety, every city which has no army in it must has a neighboring city with two armies.

So

■ A Roman dominating function corresponds a way to protect all cities.

■ The weight of a Roman dominating function is the total number of armies.

■ The Roman domination number is the least number of armies that is enough to guard all cities.
Known results

1. $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$.
2. $\gamma_R(K_n) = 2$, $\gamma(K_n) = 1$ for $n \geq 2$.
3. $\gamma_R(C_n) = \gamma_R(P_n) = \lceil 2n/3 \rceil$, $\gamma_R(C_n) = \gamma(P_n) = \lceil n/3 \rceil$.
4. $\gamma_R(G) \leq 4n/5$, $\gamma(G) = n/2$ for every G with minimum degree at least 1.
5. $\gamma_R(G) \leq 8n/11$, $\gamma(G) = 2n/5$ for every G with minimum degree at least 2. (except 7 small graphs in domination case).
Chambers, Kinnersley, Prince and West [?] give the following conjecture.

Conjecture: For any 2-connected graph G of n vertices, $\gamma_R(G) \leq \lceil 2n/3 \rceil$.
Chambers, Kinnersley, Prince and West [?] give the following conjecture. **Conjecture:** For any 2-connected graph G of n vertices, $\gamma_R(G) \leq \lceil 2n/3 \rceil$.

However, this conjecture isn’t true. We shall give infinitely many examples of 2-connected graphs with $\gamma_R(G) \geq 23n/34$ and prove the following theorem.

Theorem

For any 2-connected graph G of n vertices, $\gamma_R(G) \leq \max\{\lceil 2n/3 \rceil, 23n/34\}$.

Note that $23n/34 - 2n/3 = n/102$.
Explosion Graphs

The *explosion graph* G' of a multigraph G is the graph obtained by replacing each edge $e = xy$ of the original graph by a 5-cycle $C_e = C_{xy}$ such that x and y are adjacent to two nonadjacent vertices in the 5-cycle respectively.

![Diagram of explosion graph](image)

Figure: Replace an edge $e = xy$ in G by a 5-cycle $C_e = C_{xy}$.

We call $e_{x'}$, $e_{y'}$, e_{xy} the *inner vertices* of C_{xy} and of G'.
Example: explosion graph of K_4
Examples of $\gamma_R(G) \geq 23n/34$

Theorem

There are infinitely many 2-connected graphs with Roman domination number at least $23n/34$, where n is the number of vertices in the graph.
Examples of $\gamma_R(G) \geq 23n/34$

Theorem

There are infinitely many 2-connected graphs with Roman domination number at least $23n/34$, where n is the number of vertices in the graph.

Proof: Consider k copies of graphs G_1, G_2, \ldots, G_k each isomorphic to K_4, and their explosion graphs G_1', G_2', \ldots, G_k'. Let G be a 2-connected graph obtained from the disjoint union of these explosion graphs G_i''s by adding suitable edges between vertices of the original graphs G_i's. Then, G has $n = 34k$ vertices.
Examples of $\gamma_R(G) \geq 23n/34$ (continued)

Suppose to the contrary that $\gamma_R(G) < 23k$. Choose an optimal Roman dominating function f of G. Since $\sum_{i=1}^{k} w(f, G'_i) = w(f) < 23k$, there is some G'_i with $w(f, G'_i) < 23$.
Examples of $\gamma_R(G) \geq 23n/34$ (continued)

Suppose to the contrary that $\gamma_R(G) < 23k$. Choose an optimal Roman dominating function f of G. Since $\sum_{i=1}^{k} w(f, G'_i) = w(f) < 23k$, there is some G'_i with $w(f, G'_i) < 23$.

For any edge xy in G_i, no matter what are the values of $f(x)$ and $f(y)$, it is always the case that $w(f, C_{xy}) \geq 3$.

Furthermore, if $f(x) \leq 1$ and $f(y) \leq 1$, then $w(f, C_{xy}) \geq 4$.
Examples of $\gamma_R(G) \geq 23n/34$ (continued)

Suppose to the contrary that $\gamma_R(G) < 23k$. Choose an optimal Roman dominating function f of G. Since $\sum_{i=1}^{k} w(f, G'_i) = w(f) < 23k$, there is some G'_i with $w(f, G'_i) < 23$.

For any edge xy in G_i, no matter what are the values of $f(x)$ and $f(y)$, it is always the case that $w(f, C_{xy}) \geq 3$.

Furthermore, if $f(x) \leq 1$ and $f(y) \leq 1$, then $w(f, C_{xy}) \geq 4$.

Suppose G_i has r vertices v with $f(v) \leq 1$, where $0 \leq r \leq 4$.

There are then $\binom{r}{2}$ edges xy in G_i with $w(f, C_{xy}) \geq 4$. Thus

$$23 > w(f, G'_i) \geq r \cdot 0 + (4 - r)2 + 6 \cdot 3 + \binom{r}{2},$$

which is impossible as $0 \leq r \leq 4$. □
Outline

1. Introduction

2. Counter-examples

3. Roman domination on special graphs

4. Roman domination on 2-connected graphs

5. Reference
Main idea

We often consider three Roman dominating functions f_1, f_2, and f_3 of G.

- We use \vec{f} to denote the 3-tuple (f_1, f_2, f_3), and $\vec{f}(v)$ for $(f_1(v), f_2(v), f_3(v))$.
- The weight of \vec{f} is $w(\vec{f}) = \sum_{j=1}^{3} w(f_j)$. Note that $\gamma_R(G) \leq w(f_j) \leq w(\vec{f})/3$ for some j.
- A vertex v is \vec{f}-strong if $f_j(v) = 2$ for some j.

Our goal is to construct \vec{f} with $w(\vec{f}) \leq \max\{2n + 2, 69n/34\}$ for 2-connected graphs of n vertices.
Example

f is a 3-tuple Roman dominating function.

$w(f) = 4 + 3 + 3 = 10.$

Every vertex is f-strong.
For cycles

Lemma

If $n \geq 3$, then the n-cycle C_n has a 3-tuple \vec{f} of Roman dominating functions in which all vertices are \vec{f}-strong and $w(\vec{f}) \leq 2n$ when n is a multiple of 3 and $w(\vec{f}) \leq 2n + 2$ otherwise.

Proof:

- For the case when $n = 3k$, the following \vec{f} is as desired: $\vec{f}(v_{3i+1}) = (2, 0, 0)$, $\vec{f}(v_{3i+2}) = (0, 2, 0)$ and $\vec{f}(v_{3i+3}) = (0, 0, 2)$ for all i.
- When $n = 3k + 1$, modify \vec{f} by changing $\vec{f}(v_1)$ to be $(2, 0, 1)$ and $\vec{f}(v_n)$ to be $(2, 1, 0)$.
- When $n = 3k + 2$, changing $\vec{f}(v_1)$ to be $(2, 0, 2)$.
For explosion graphs

Theorem

If \(G' \) is the explosion graph of a multigraph \(G \) without isolated vertices and \(G' \) has \(n' \) vertices, then \(G' \) has a 3-tuple \(\vec{f} \) of Roman dominating functions such that \(w(\vec{f}) \leq 69n'/34 \) and every non-inner vertex is \(\vec{f} \)-strong.

Sketch of proof: We shall assign \(\vec{f} \) on vertices of \(G \) first, and then assign the remaining vertices. For each \(\vec{f} \)-strong vertex \(x \), there exists \(j_x \) such that \(f_{j_x}(x) = 2 \). For each \(e = xy \in E(G) \), once we have assign \(\vec{f}(x) \) and \(\vec{f}(y) \), we can only guarantee that

- if \(j_x \neq j_y \), then \(w(\vec{f}, C_{xy}) \leq 3 + 3 + 4 = 2|C_{xy}|. \) (type-1)
- If \(j_x = j_y \), then \(w(\vec{f}, C_{xy}) \leq 3 + 4 + 4 = 2|C_{xy}| + 1. \) (type-2)
We shall assign \vec{f} greedly.

1. Order vertices of G into v_1, v_2, \ldots, v_n according to their degree and number of neighbors.

2. Assign $\vec{f}(v_i)$ according to $\vec{f}(v_k)$, where $k < i$ and v_k is adjacent to v_i.

3. For every edge $e = xy \in E(G)$, assign \vec{f} on C_{xy} according to $\vec{f}(x)$ and $\vec{f}(y)$.

Note that $69/34 = 2 + 1/34$. We only need to promise that type-2 edges only occur for each 4 vertices and 6 edges in G. (i.e. 34 vertices in G'.) □
Adding a path

Lemma

Suppose G has a 3-tuple \vec{f} of Roman dominating functions for which u and v are \vec{f}-strong. If G' is obtained from G by adding a disjoint path $P = v_1 v_2 \ldots v_t$ with $t \geq 1$ and two edges uv_1 and $v_t v$, then \vec{f} can be extended to G' such that $w(\vec{f}, P) = 2t$ and v_i is \vec{f}-strong for $1 < i < t$.

Proof: Assume that $f_j(u) = 2$ and $f_k(v) = 2$. We shall define \vec{f} by: $\vec{f}(v_{3i+1}) = (2, 0, 0)$, $\vec{f}(v_{3i+2}) = (0, 2, 0)$ and $\vec{f}(v_{3i+3}) = (0, 0, 2)$ for all i with some modifications according to the value $(t \mod 3)$ and whether $j = k$ or not in following six cases.
Adding a path (continued)

Case 1. \(t \equiv 0 \pmod{3} \) and \(j = k \), say \(j = k = 1 \). In this case, change \(\vec{f}(v_1) \) from \((2, 0, 0)\) to \((0, 0, 1)\) and \(\vec{f}(v_2) \) from \((0, 2, 0)\) to \((1, 2, 0)\) as follows.

\[
\begin{array}{cccccccc}
 u & v_1 & v_2 & v_3 & \cdots & v_{t-2} & v_{t-1} & v_t & v \\
 f_1 & 2 & 0 & 1 & 0 & \cdots & 2 & 0 & 0 & 2 \\
 f_2 & * & 0 & 2 & 0 & \cdots & 0 & 2 & 0 & * \\
 f_3 & * & 1 & 0 & 2 & \cdots & 0 & 0 & 2 & * \\
\end{array}
\]

Case 2. \(t \equiv 0 \pmod{3} \) and \(j \neq k \), say \(j = 3 \) and \(k = 1 \). In this case, no modification is needed.

\[
\begin{array}{cccccccc}
 u & v_1 & v_2 & v_3 & \cdots & v_{t-2} & v_{t-1} & v_t & v \\
 f_1 & * & 2 & 0 & 0 & \cdots & 2 & 0 & 0 & 2 \\
 f_2 & * & 0 & 2 & 0 & \cdots & 0 & 2 & 0 & * \\
 f_3 & 2 & 0 & 0 & 2 & \cdots & 0 & 0 & 2 & * \\
\end{array}
\]
Case 3. \(t \equiv 1 \pmod{3} \) and \(j = k \), say \(j = k = 1 \). In this case, if \(t = 1 \), then change \(\vec{f}(v_1) \) from \((2, 0, 0)\) to \((0, 1, 1)\) as follows.

\[
\begin{array}{ccc}
 u & v_1 & v \\
 f_1 & 2 & 0 \\
 f_2 & * & 1 \\
 f_3 & * & 1 \\
\end{array}
\]

As for \(t \neq 1 \), change \(\vec{f}(v_1) \) from \((2, 0, 0)\) to \((0, 0, 1)\), \(\vec{f}(v_2) \) from \((0, 2, 0)\) to \((1, 2, 0)\), \(\vec{f}(v_{t-1}) \) from \((0, 0, 2)\) to \((1, 0, 2)\) and \(\vec{f}(v_t) \) from \((2, 0, 0)\) to \((0, 1, 0)\) as follows.

\[
\begin{array}{cccccccc}
 u & v_1 & v_2 & v_3 & \cdots & v_{t-2} & v_{t-1} & v_t & v \\
 f_1 & 2 & 0 & 1 & 0 & \cdots & 0 & 1 & 0 & 2 \\
 f_2 & * & 0 & 2 & 0 & \cdots & 2 & 0 & 1 & * \\
 f_3 & * & 1 & 0 & 2 & \cdots & 0 & 2 & 0 & * \\
\end{array}
\]
Adding a path (continued)

Case 4. $t \equiv 1 \pmod{3}$ and $j \neq k$, say $j = 3$ and $k = 2$. In this case, no modification is needed.

$$
\begin{array}{cccccccc}
 u & v_1 & v_2 & v_3 & \cdots & v_{t-2} & v_{t-1} & v_t & v \\
 f_1 & * & 2 & 0 & 0 & \cdots & 0 & 0 & 2 & * \\
 f_2 & * & 0 & 2 & 0 & \cdots & 2 & 0 & 0 & 2 \\
 f_3 & 2 & 0 & 0 & 2 & \cdots & 0 & 2 & 0 & * \\
\end{array}
$$

Case 5. $t \equiv 2 \pmod{3}$ and $j = k$, say $j = k = 3$. In this case, no modification is needed.

$$
\begin{array}{cccccccc}
 u & v_1 & v_2 & v_3 & \cdots & v_{t-2} & v_{t-1} & v_t & v \\
 f_1 & * & 2 & 0 & 0 & \cdots & 0 & 2 & 0 & * \\
 f_2 & * & 0 & 2 & 0 & \cdots & 0 & 0 & 2 & * \\
 f_3 & 2 & 0 & 0 & 2 & \cdots & 2 & 0 & 0 & 2 \\
\end{array}
$$
Case 6. $t \equiv 2 \pmod{3}$ and $j \neq k$, say $j = 1$ and $k = 3$. In this case, change $\vec{f}(v_1)$ from $(2, 0, 0)$ to $(0, 0, 1)$ and $\vec{f}(v_2)$ from $(0, 2, 0)$ to $(1, 2, 0)$ as follows.

$$
\begin{array}{cccccccc}
& u & v_1 & v_2 & v_3 & \cdots & v_{t-2} & v_{t-1} & v_t & V \\
 f_1 & 2 & 0 & 1 & 0 & \cdots & 0 & 2 & 0 & \star \\
f_2 & \star & 0 & 2 & 0 & \cdots & 0 & 0 & 2 & \star \\
f_3 & \star & 1 & 0 & 2 & \cdots & 2 & 0 & 0 & 2 \\
\end{array}
$$

Note that v_1 and v_t are also \vec{f}-strong for Case 2, 4 and 5.
Adding a tailed cycle

A tailed t-cycle H is a cycle $v_1v_2\ldots v_tv_1$ together with a path $u_1u_2\ldots u_s$ call the tail and an edge u_sv_1. We call u_1 the starting vertex and v_t the inner vertex of H.

Lemma

Suppose G has a 3-tuple \vec{f} of Roman dominating functions for which u is \vec{f}-strong. If G' is obtained from G by adding a tailed t-cycle H with $t \equiv 1 \pmod{3}$ and an edge uu_1, then \vec{f} can be extended to G' such that $w(\vec{f},H) = 2|V(H)|$ and all vertices of H except the inner vertex are \vec{f}-strong.
Proof: Without loss of generality, we may assume that $f_3(u) = 2$. First, we define \vec{f} for the vertices on the tail of H as $\vec{f}(u_{3i+1}) = (2, 0, 0)$, $\vec{f}(u_{3i+2}) = (0, 2, 0)$ and $\vec{f}(u_{3i+3}) = (0, 0, 2)$ for all i.

Without loss of generality, we may assume that $f_1(u_s) = 2$.

Next, define \vec{f} for the other vertices of H as $\vec{f}(v_{3i+1}) = (0, 2, 0)$, $\vec{f}(v_{3i+2}) = (0, 0, 2)$ and $\vec{f}(v_{3i+3}) = (2, 0, 0)$ for all i with the modifications of changing $\vec{f}(v_{t-1})$ from $(2, 0, 0)$ to $(2, 1, 0)$ and changing $\vec{f}(v_t)$ from $(0, 2, 0)$ to $(0, 0, 1)$. The extension is then as desired. \qed
Adding a tailed θ-graph

A *tailed* θ-graph H consists of three internally disjoint paths $P_i : av_{i,1}v_{i,2} \ldots v_{i,t_i}b$, where t_i is a multiple of 3 for $1 \leq i \leq 3$, together with a path $u_1u_2\ldots u_s$ call the *tail* and an edge $u_s a$. We call u_1 the *starting* vertex and $v_{1,1}$, $v_{2,1}$ and $v_{3,1}$ the *inner* vertices of H.

Lemma

Suppose G has a 3-tuple \vec{f} of Roman dominating functions for which u is \vec{f}-strong. If G' is obtained from G by adding a disjoint tailed θ-graph H and an edge uu_1, then \vec{f} can be extended to G' such that $w(\vec{f}, H) = 2|V(H)|$ and all vertices of H except the inner vertices are \vec{f}-strong.
Adding a tailed θ-graph (continued)

Proof: Without loss of generality, we may assume that $f_3(u) = 2$. First, we define \vec{f} for the vertices on the tail of H as $\vec{f}(u_{3i+1}) = (2, 0, 0)$, $\vec{f}(u_{3i+2}) = (0, 2, 0)$ and $\vec{f}(u_{3i+3}) = (0, 0, 2)$ for all i. Without loss of generality, we may assume that $f_2(u_s) = 2$. Next, define \vec{f} for the vertices of P_k as $\vec{f}(v_{k,3i+1}) = (2, 0, 0)$, $\vec{f}(v_{k,3i+2}) = (0, 2, 0)$ and $\vec{f}(v_{k,3i+3}) = (0, 0, 2)$ with the modification of changing $\vec{f}(v_{k,1}) = (0, 0, 0)$, $\vec{f}(v_{k,2}) = (1, 2, 0)$ for all $k = 1, 2, 3$ and i. Finally, define $\vec{f}(a) = (2, 0, 2)$ and $\vec{f}(b) = (2, 1, 0)$. Then, \vec{f} is as desired. \square
Outline

1. Introduction
2. Counter-examples
3. Roman domination on special graphs
4. Roman domination on 2-connected graphs
5. Reference
Main theorem

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a 2-connected graph of n vertices, then $\gamma_R(G) \leq \max{\lceil2n/3\rceil, 23n/34}$.</td>
</tr>
</tbody>
</table>

We shall prove the theorem by contradiction. Assume that G is a *minimum counter-example* to the theorem. In other words, G is a 2-connected graph of order n with $\gamma_R(G) > \max\{\lceil2n/3\rceil, 23n/34\}$, and any 2-connected graph G' of order n' with $n' + |E(G')| < n + |E(G)|$ satisfies $\gamma_R(G') \leq \max\{\lceil2n'/3\rceil, 23n'/34\}$.
Proof of the main theorem

Suppose the theorem is not true. Find a minimum counter example G. We shall start with a subgraph L of ℓ vertices and construct a 3-tuple of Roman dominating functions \vec{f} of L for which all boundary vertices of L are \vec{f}-strong and $w(\vec{f}, L) \leq \max\{2\ell + 2, 69\ell/34\}$. If $\ell = n$ then we reach a contraction. Otherwise we add to L a subgraph H of $G - V(L)$ with h vertices and some edges between H and L to get a new L' of $\ell' = \ell + h$ vertices; and extend \vec{f} to be a 3-tuple of Roman dominating function of L' such that all boundary vertices of L' are \vec{f}-strong and $w(\vec{f}, H) \leq 2h$ or equivalently $w(\vec{f}, L') \leq \max\{2\ell' + 2, 69\ell'/34\}$. We then replace L by L' and continue the process until $\ell = n$, which leads to a contradiction.
Suppose L is a subgraph of G, a vertex in L is called a boundary (respectively, interior) vertex with respect to G if it is adjacent to some (respectively, no) vertex in $V(G) - V(L)$.

Lemma

Suppose G is a minimum counter-example to Theorem ??, and L is a connected subgraph of G which has a 3-tuple \vec{f} of Roman dominating functions such that boundary vertices of L are \vec{f}-strong. If $V(L) \neq V(G)$ and $G - V(L)$ has no 3p-cycle and explosion graph whose inner vertices are of degree 2 in G as subgraphs, then one of the following statements holds.
Key lemma (continued)

1. $G - V(L)$ has a path H whose endpoints are adjacent to vertices in L and are also interior vertices of $L \cup H$.
2. $G - V(L)$ has a tailed $(3p + 1)$-cycle H whose starting vertex is adjacent to a vertex in L and whose inner vertex is of degree 2 in G.
3. $G - V(L)$ has a tailed θ-graph H whose starting vertex is adjacent to a vertex in L and whose inner vertices are of degree 2 in G.
4. $G - V(L)$ has a $3p$-path or a $(3p + 1)$-path H whose endpoints adjacent to some u, v in L and $f_i(u) = f_j(v) = 2$ for some $i \neq j$.
5. $G - V(L)$ has a $(3p + 2)$-path H whose endpoints adjacent to some u, v in L and $f_i(u) = f_i(v) = 2$ for some i.
Proof of the main theorem (continued)

Step 1. Find a subgraph L of G with as many number of vertices as possible such that L is the explosion graph of some graph without isolated vertices and the inner vertices of L are not boundary vertices. By Theorem ??, a desired \vec{f} exists. If there is no such graph, just view L as an empty graph.

Step 2. Find a cycle H of length a multiple of 3 in $G - V(L)$. By Lemma ??, \vec{f} can be extended to L' as desired. Repeat this step until no more such cycle exists.
Proof of the main theorem (continued)

Step 3. If L is not connected, then choose two components and a path H in $G - V(L)$ with one endpoint adjacent to a vertex in a component and the other endpoint adjacent to a vertex in the other component. By Cases 2, 4, 5 of Lemma ??, \vec{f} can be extended to L' as desired. Notice that in order to use Cases 2, 4, 5 we may have to inter-change the role of f_j’s in a component so that we can really apply these three cases. Repeat this step until L is connected.

Step 4. If Steps 1 to 3 result an empty graph, then find a cycle as L, which is as desired by Lemma ??.
Proof of the main theorem (continued)

After performing Steps 1 to 4, we have a desired induced subgraph L which is also connected. By Lemma ??, we can always find a subgraph H from $G - V(L)$ satisfying one of the five cases. We then can use Lemmas ??, ?? and ?? to extend \vec{f} to L' as desired. □
Outline

1. Introduction
2. Counter-examples
3. Roman domination on special graphs
4. Roman domination on 2-connected graphs
5. Reference

Reference (continued)

Reference (continued)

N. Prince, *Thresholds for Roman domination*, manuscript.

THANK YOU