Existence of Subdivisions of Vertex-Disjoint Graphs with Few Edges

Shenggui Zhang

Department of Applied Mathematics
Northwestern Polytechnical University
Xi’an, Shaanxi 710072, China

July 31, 2009
Outline

1 Introduction
 - Terminology and Notation
 - Motivation

2 Main Results
 - Cycles and Chorded Cycles in Graphs
 - Trees, Unicyclic Graphs and Chorded Cycles in Graphs
 - Cycles in Bipartite Graphs
An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that cycle.
An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a **chord** of that cycle.

A **chorded cycle** is a cycle with at least one chord.
An edge which joins two vertices of a cycle but is not itself an edge of the cycle is a **chord** of that cycle.

A **chorded cycle** is a cycle with at least one chord.

A **unicyclic graph** is a connected graph which has exactly one cycle.
A subdivision of a graph H is a graph that can be obtained from H by a sequence of edge subdivisions.
A subdivision of a graph H is a graph that can be obtained from H by a sequence of edge subdivisions.

If H is a graph such that each of the components contains at most one cycle, then a cyclic subdivision of H is defined as a subdivision of H in which only edges on the cycle of H are subdivided.
A subdivision of a graph H is a graph that can be obtained from H by a sequence of edge subdivisions.

If H is a graph such that each of the components contains at most one cycle, then a cyclic subdivision of H is defined as a subdivision of H in which only edges on the cycle of H are subdivided.

A set of subgraphs of a graph G is said to be vertex-disjoint if no two of them have a common vertex in G.
Theorem (Dirac, 1952)

Let G be a graph on $n \geq 3$ vertices. If $\delta(G) \geq n/2$, then G contains a Hamilton cycle.
Theorem (Dirac, 1952)

Let \(G \) be a graph on \(n \geq 3 \) vertices. If \(\delta(G) \geq n/2 \), then \(G \) contains a Hamilton cycle.

This theorem can be restated as:

Theorem

Let \(G \) be a graph on \(n \geq 3 \) vertices. If \(\delta(G) \geq n/2 \) and \(C \) is a cycle of \(G \), then \(G \) contains a spanning subdivision of \(C \).
Theorem (Corrádi and Hajnal, 1963)

Let s be a positive integer. If G is a graph with at least $3s$ vertices such that $\delta(G) \geq 2s$, then G contains s vertex-disjoint cycles.
Theorem (Corrádi and Hajnal, 1963)

Let s be a positive integer. If G is a graph with at least $3s$ vertices such that $\delta(G) \geq 2s$, then G contains s vertex-disjoint cycles.

This theorem can be restated as:

Theorem

Let s be a positive integer and H be the disjoint union of s cycles of length 3. If G is a graph with at least $3s$ vertices such that $\delta(G) \geq 2s$, then G contains a subdivision of H.
In two recent papers published in DM and G&C, Babu and Diwan gave generalizations of the theorems of Dirac and of Corrádi and Hajnal, in terms of subdivisions of graphs with few edges.
In two recent papers published in DM and G&C, Babu and Diwan gave generalizations of the theorems of Dirac and of Corrádi and Hajnal, in terms of subdivisions of graphs with few edges.

In the following we will introduce three new results on the existence of subdivisions of vertex-disjoint graphs with few edges.
Theorem (Dirac, 1952)

Let G be a graph on $n \geq 3$ vertices. If $\delta(G) \geq n/2$ and C is a cycle of G, then G contains a spanning subdivision of C.
Theorem (Dirac, 1952)

Let G be a graph on $n \geq 3$ vertices. If $\delta(G) \geq n/2$ and C is a cycle of G, then G contains a spanning subdivision of C.

Babu and Diwan gave a generalization of this theorem by replacing the cycle C with disjoint trees and unicyclic graphs.

Theorem (Babu and Diwan, DM, 2008)

Let G be a graph on n vertices and H be a subgraph of G such that each component of H is either a non-trivial tree or a unicyclic graph. If the number of tree components of H is t and $\delta(G) \geq (n - t)/2$, then G contains a spanning subdivision of H.
Motivated by the above theorem of Babu and Diwan, we give a generalization of Dirac’s theorem in terms of subdivisions of vertex-disjoint cycles and chorded cycles.
Motivated by the above theorem of Babu and Diwan, we give a generalization of Dirac’s theorem in terms of subdivisions of vertex-disjoint cycles and chorded cycles.

Theorem (Qiao and Zhang, 2009)

Let G be a graph on $n \geq 3$ vertices and H be a subgraph of G such that each component of H is a cycle with at most one chord. If $\delta(G) \geq n/2$, then G contains a spanning subdivision of H where only non-chord edges are subdivided.
Theorem (Corrádi and Hajnal, 1963)

Let s be a positive integer and H be the disjoint union of s cycles of length 3. If G is a graph with at least $3s$ vertices such that $\delta(G) \geq 2s$, then G contains a subdivision of H.
Theorem (Corrádi and Hajnal, 1963)

Let s be a positive integer and H be the disjoint union of s cycles of length 3. If G is a graph with at least $3s$ vertices such that $\delta(G) \geq 2s$, then G contains a subdivision of H.

Theorem (Brandt, 1994)

Let n, r be two positive integers and F be a forest with n vertices and r components. If G is a graph with at least n vertices such that $\delta(G) \geq n - r$, then G contains a subgraph isomorphic to F.
Theorem (Schuster, 1998)

Let n, r, s be three positive integers, F be a forest with n vertices and r components without isolated vertices, and G be a graph with at least $n + 3s$ vertices such that $\delta(G) \geq (n - r) + 2s$. Then G contains a vertex-disjoint union of a subgraph isomorphic to F and s cycles.
Theorem (Schuster, 1998)

Let n, r, s be three positive integers, F be a forest with n vertices and r components without isolated vertices, and G be a graph with at least $n + 3s$ vertices such that $\delta(G) \geq (n - r) + 2s$. Then G contains a vertex-disjoint union of a subgraph isomorphic to F and s cycles.

Theorem (Babu and Diwan, G&C, 2008)

Let n, r be two positive integers and H be a graph with n vertices and r non-trivial components such that either a non-trivial tree or a unicyclic graph. If G is a graph with at least n vertices such that $\delta(G) \geq n - r$, then G contains a cyclic subdivision of H.
Theorem (Finkel, 2008)

Let t be a positive integer. If G is a graph with at least $4t$ vertices such that $\delta(G) \geq 3t$, then G contains t vertex-disjoint chorded cycles.
Theorem (Finkel, 2008)

Let t be a positive integer. If G is a graph with at least $4t$ vertices such that $\delta(G) \geq 3t$, then G contains t vertex-disjoint chorded cycles.

Theorem (Qiao and Zhang, 2009)

Let n, r, t be three non-negative integers. Let H be a graph with n vertices and r components such that each component is either a non-trivial tree or a unicyclic graph. If G is a graph with at least $n + 4t$ vertices such that $\delta(G) \geq (n - r) + 3t$, then G contains a vertex-disjoint union of a cyclic subdivision of H and t chorded cycles.
Theorem (Wang, 2000)

Let G be a bipartite graph with bipartition (X, Y) such that $|X| = |Y| \geq sk$, where $s \geq 3$ and $k \geq 1$ are two integers. If $\delta(G) \geq (s - 1)k + 1$, then G contains k vertex-disjoint cycles of length at least $2s$.
Theorem (Wang, 2000)

Let G be a bipartite graph with bipartition (X, Y) such that $|X| = |Y| \geq sk$, where $s \geq 3$ and $k \geq 1$ are two integers. If $\delta(G) \geq (s-1)k + 1$, then G contains k vertex-disjoint cycles of length at least $2s$.

Theorem (Babu and Diwan, G&C, 2008)

Let H be a graph with n vertices and k non-trivial components such that either a non-trivial tree or a unicyclic graph. Let G be a graph with at least n vertices. If $\delta(G) \geq n - k$, then G contains a cyclic subdivision of H.
Theorem (Qiao and Zhang, 2009)

Let H be a graph of order n with k components, each of which is an even cycle of length at least 6. Suppose that G is a bipartite graph with bipartition (X, Y) such that $|X| = |Y| \geq n/2$. If $\delta(G) \geq n/2 - k + 1$, then G contains a subdivision of H.
Theorem (Qiao and Zhang, 2009)

Let H be a graph of order n with k components, each of which is an even cycle of length at least 6. Suppose that G is a bipartite graph with bipartition (X, Y) such that $|X| = |Y| \geq \frac{n}{2}$. If $\delta(G) \geq \frac{n}{2} - k + 1$, then G contains a subdivision of H.

- This theorem is a generalization of Wang’s theorem when taking each cycle as a C_6.
Conjecture (Wang, 1996)

Let G be a balanced bipartite graph with bipartition (X, Y) such that $|X| = |Y| = 2k$, where k is a positive integer. If $\delta(G) \geq k + 1$, then G contains k vertex-disjoint cycles of length 4.
Conjecture (Wang, 1996)

Let G be a balanced bipartite graph with bipartition (X, Y) such that $|X| = |Y| = 2k$, where k is a positive integer. If $\delta(G) \geq k + 1$, then G contains k vertex-disjoint cycles of length 4.

Conjecture

Let H be a graph of order n with k components, each of which is an even cycle. Suppose that G is a bipartite graph with bipartition (X, Y) such that $|X| = |Y| \geq n/2$. If $\delta(G) \geq n/2 - k + 1$, then G contains a subdivision of H.
Thank you!