Coloring 1-planar graphs

Xin Zhang, Jian-Liang Wu
and
Guizhen Liu

School of Mathematics,
Shandong University, Jinan, 250100, China
Outline

1. Introduction
2. The structure of 1-planar graphs
3. The coloring problems of 1-planar graphs
4. References
What are 1-planar graphs?

Definition

A graph G is **1-immersed** into a surface if it can be drawn on the surface so that each edge is crossed by at most one other edge. In particular, A graph is **1-planar** if it is 1-immersed into the plane (i.e. has a plane 1-immersion).
What are 1-planar graphs?

Definition

A graph G is 1-immersed into a surface if it can be drawn on the surface so that each edge is crossed by at most one other edge. In particular, A graph is 1-planar if it is 1-immersed into the plane (i.e. has a plane 1-immersion).
What are 1-planar graphs?

Note

K_7, $K_{3,5}$ and $K_{4,4}$ are not 1-planar graphs.
What are 1-planar graphs?

Remark

The notion of 1-planar was introduced by Ringel in the connection with problem of the simultaneous coloring of adjacent/incidence of vertices and faces of plane graphs.

Definition

A vertex-face \(r \)-coloring is a mapping that assigns a color from the set \(\{1, \cdots, r\} \) to every vertex and every face of \(G \) such that different colors are assigned whenever two elements are either adjacent or incident.
What are 1-planar graphs?

Remark

The notion of 1-planar was introduced by Ringel in the connection with problem of the simultaneous coloring of adjacent/incidence of vertices and faces of plane graphs.

Example

The vertex-face chromatic number of G is equal to the vertex chromatic number of H.
Subclasses of 1-planar graphs

Definition
A graph H is a **minor** of a graph G if H can be obtained from G by contracting a subset of the edges in a subgraph of G.

Three subclasses of 1-planar graphs

1. Planar Graphs
 $\{K_5, K_{3,3}\}$-minor-free graphs
2. Series-Parallel Graphs
 $\{K_4\}$-minor-free graphs
3. Outerplanar Graphs
 $\{K_4, K_{2,3}\}$-minor-free graphs
Subclasses of 1-planar graphs

Definition

A graph H is a minor of a graph G if H can be obtained from G by contracting a subset of the edges in a subgraph of G.

Three subclasses of 1-planar graphs

1. Planar Graphs
 \{K_5, K_{3,3}\}-minor-free graphs

2. Series-Parallel Graphs
 \{K_4\}-minor-free graphs

3. Outerplanar Graphs
 \{K_4, K_{2,3}\}-minor-free graphs
Subclasses of 1-planar graphs

Definition

A graph H is a **minor** of a graph G if H can be obtained from G by contracting a subset of the edges in a subgraph of G.

Three subclasses of 1-planar graphs

1. Planar Graphs
 \{\text{\emph{K}}_5, \text{\emph{K}}_{3,3}\}\text{-minor-free graphs}

2. Series-Parallel Graphs
 \{\text{\emph{K}}_4\}\text{-minor-free graphs}

3. Outerplanar Graphs
 \{\text{\emph{K}}_4, \text{\emph{K}}_{2,3}\}\text{-minor-free graphs}
Subclasses of 1-planar graphs

Definition

A graph H is a minor of a graph G if H can be obtained from G by contracting a subset of the edges in a subgraph of G.

Three subclasses of 1-planar graphs

1. Planar Graphs
 \{K_5, $K_{3,3}$\}-minor-free graphs

2. Series-Parallel Graphs
 \{K_4\}-minor-free graphs

3. Outerplanar Graphs
 \{K_4, $K_{2,3}$\}-minor-free graphs
Can 1-planarity be characterized by forbidding some minors?

Observation [Korzhik, 2008]

There is a 1-planar subdivision of every graph G. Indeed, take a plane drawing of G and then for every edge with at least two crossing points, place on the edge a new 2-valent vertex between every pair of adjacent crossing points. We obtain a 1-planar subdivision of G.

![Diagram showing the transformation of a graph into a 1-planar subdivision](image)
Can 1-planarity be characterized by forbidding some minors?

Conclusion

The set of 1-planar graphs is not closed under taking minors.

\[G \rightarrow \text{a 1-planar subdivision of } G \]
How many edges are there in a 1-planar graphs?

Theorem A [Albertson and Mohar, 2006]

For each graph 1-immersed on a surface with Euler characteristic ε, $e(G) \leq 4(v(G) - \varepsilon)$ holds. In particular, the number of edges of 1-planar graph G is bounded by $4v(G) - 8$.

Theorem B

Let G be a graph 1-immersed on a surface with Euler characteristic ε. We have $e(G) \leq \frac{2g(G)-2}{g(G)-2} (v(G) - \varepsilon)$.

Xin Zhang, Jian-Liang Wu and Guizhen Liu
School of Mathematics, Shandong University, Jinan, 250100, China

Coloring 1-planar graphs
How many edges are there in a 1-planar graphs?

Theorem A [Albertson and Mohar, 2006]

For each graph 1-immersed on a surface with Euler characteristic ε, $e(G) \leq 4(v(G) - \varepsilon)$ holds. In particular, the number of edges of 1-planar graph G is bounded by $4v(G) - 8$.

Theorem B

Let G be a graph 1-immersed on a surface with Euler characteristic ε. We have $e(G) \leq \frac{2g(G) - 2}{g(G) - 2} (v(G) - \varepsilon)$.

Xin Zhang, Jian-Liang Wu and Guizhen Liu

School of Mathematics, Shandong University, Jinan, 250100, China

Coloring 1-planar graphs
How many edges are there in a 1-planar graphs?

Corollary

1. Each 1-planar graph has a vertex of degree ≤ 7. Then bound 7 is best possible.

2. For each triangle-free 1-planar graph G, $e(G) \leq 3v(G) - 6$ holds.

Theorem B

Let G be a graph 1-immersed on a surface with Euler characteristic ε. We have $e(G) \leq \frac{2g(G) - 2}{g(G) - 2} (v(G) - \varepsilon)$.
Definition

We say that G is *f-choosable* if, whenever we are given lists A_v of colors with $|A_v| = f(v)$ for each $v \in V(G)$, we can choose a color $c(v) \in A_v$ for each vertex v such that no two adjacent vertices receive the same color. The *list chromatic index* $\chi'_{list}(G)$ of G is the smallest number such that G is *f-choosable* when we assign $f(x) = k$ for each $v \in V(G)$.

Remark

We can similar define the list analogue of some other colorings, such as *list edge coloring*, *list total coloring*, etc.
Definition

We say that G is f-choosable if, whenever we are given lists A_v of colors with $|A_v| = f(v)$ for each $v \in V(G)$, we can choose a color $c(v) \in A_v$ for each vertex v such that no two adjacent vertices receive the same color. The list chromatic index $\chi'_{\text{list}}(G)$ of G is the smallest number such that G is f-choosable when we assign $f(x) = k$ for each $v \in V(G)$.

Remark

We can similar define the list analogue of some other colorings, such as list edge coloring, list total coloring, etc.
Theorem C [Borodin, 1984]
Each 1-planar graph is 6-colorable.

Theorem D [Ringel, 1981]
If G can be 1-immersed into an orientable surface S_g of genus $g \geq 1$, then $\chi(G) \leq \lceil (9 + \sqrt{64g + 17})/2 \rceil$.
Theorem C [Borodin, 1984]
Each 1-planar graph is 6-colorable.

Theorem D [Ringel, 1981]
If G can be 1-immersed into an orientable surface S_g of genus $g \geq 1$, then $\chi(G) \leq \lceil (9 + \sqrt{64g + 17})/2 \rceil$.

Xin Zhang, Jian-Liang Wu and Guizhen Liu
School of Mathematics, Shandong University, Jinan, 250100, China
Theorem E [Albertson and Mohar, 2006]

If G can be 1-immersed into a surface of Euler genus g, then $\chi'_{\text{list}}(G) \leq R(g) = \lfloor (9 + \sqrt{32g + 17})/2 \rfloor$. Moreover, if $g = 2$ or $g \geq 4$, then $\chi'_{\text{list}}(G) = R(g)$ if and only if G contains the complete graph of order $R(g)$ as a subgraph.

Theorem F [Borodin, Kostochka, Raspaud and Sopena, 2001]

Each 1-planar graph is (list) acyclically 20-colorable.
Theorem E [Albertson and Mohar, 2006]

If G can be 1-immersed into a surface of Euler genus g, then $\chi'_\text{list}(G) \leq R(g) = \lfloor (9 + \sqrt{32g + 17})/2 \rfloor$. Moreover, if $g = 2$ or $g \geq 4$, then $\chi'_\text{list}(G) = R(g)$ if and only if G contains the complete graph of order $R(g)$ as a subgraph.

Theorem F [Borodin, Kostochka, Raspaud and Sopena, 2001]

Each 1-planar graph is (list) acyclically 20-colorable.
Definition

A proper coloring of a graph G is called **acyclic** if there is no bicolored cycle in G.

Theorem F [Borodin, Kostochka, Raspaud and Sopena, 2001]

Each 1-planar graph is (list) acyclically 20-colorable.
Our Results: Edge Coloring of 1-PG

Vizing’s Theorem on Edge Coloring

For any graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Definition

A graph G is said to be of class one if $\chi'(G) = \Delta(G)$, and of class two if $\chi'(G) = \Delta(G) + 1$.
Our Results: Edge Coloring of 1-PG

1. A graph G which can be 1-immersed on a surface with Euler characteristic ε is of class one provided one of the following conditions holds:
 (a) $\varepsilon \geq 0$ and $\Delta(G) \geq 11$;
 (b) $\varepsilon < 0$ and $\Delta(G) > \frac{19 + \sqrt{169 - 144\varepsilon}}{3}$.

2. Let G be a triangle-free graph which can be 1-immersed on a plane or a projective plane. Then G is of class one if $\Delta(G) \geq 8$.

Xin Zhang, Jian-Liang Wu and Guizhen Liu
School of Mathematics, Shandong University, Jinan, 250100, China
Our Results: Edge Coloring of 1-PG

Edge coloring of 1-immersed graphs

1. A graph G which can be 1-immersed on a surface with Euler characteristic ε is of class one provided one of the following condition holds.
 (a) $\varepsilon \geq 0$ and $\Delta(G) \geq 11$;
 (b) $\varepsilon < 0$ and $\Delta(G) > \frac{19 + \sqrt{169 - 144\varepsilon}}{3}$.

2. Let G be a triangle-free graph which can be 1-immersed on a plane or a projective plane. Then G is of class one if $\Delta(G) \geq 8$.
Our Results: List Edge and List Total Coloring of 1-PG

Total coloring conjecture (TCC)

For any graph G, $\Delta(G) + 1 \leq \chi''(G) \leq \Delta(G) + 2$.

List edge/total coloring conjecture (LECC/LTCC)

For any graph G,

(a) $\chi'_{list}(G) = \chi'(G)$ and

(b) $\chi''_{list}(G) = \chi''(G)$.
Our Results: List Edge and List Total Coloring of 1-PG

List edge coloring and list total coloring of 1-planar graphs

1. Let G be a 1-planar graph with maximum degree $\Delta \geq 16$. Then $\chi'_{list}(G) \leq \Delta + 1$ and $\chi''_{list}(G) \leq \Delta + 2$.

2. Let G be a 1-planar graph with maximum degree $\Delta \geq 21$. Then $\chi'_{list}(G) = \Delta$ and $\chi''_{list}(G) = \Delta + 1$.
Our Results: List Edge and List Total Coloring of 1-PG

List edge coloring and list total coloring of 1-planar graphs

1. Let G be a 1-planar graph with maximum degree $\Delta \geq 16$. Then $\chi'_{list}(G) \leq \Delta + 1$ and $\chi''_{list}(G) \leq \Delta + 2$.

2. Let G be a 1-planar graph with maximum degree $\Delta \geq 21$. Then $\chi'_{list}(G) = \Delta$ and $\chi''_{list}(G) = \Delta + 1$.
Conclusion

1. TCC holds for 1-planar graph with maximum degree $\Delta(G) \geq 16$.

2. LECC and LTCC holds for 1-planar graph with maximum degree $\Delta(G) \geq 21$.
1. TCC holds for 1-planar graph with maximum degree $\Delta(G) \geq 16$.
2. LECC and LTCC holds for 1-planar graph with maximum degree $\Delta(G) \geq 21$.

Xin Zhang, Jian-Liang Wu and Guizhen Liu
School of Mathematics, Shandong University, Jinan, 250100, China
Coloring 1-planar graphs
Our Results: Acyclic Edge Coloring of 1-PG

Definition

A proper k-edge coloring c of G is called an **acyclic k-edge-coloring** of G if there are no bichromatic cycles in G under the coloring c. The smallest number of colors such that G has an acyclic edge coloring is called the **acyclic chromatic number** of G, denoted by $\chi'_a(G)$. We can also define the list analogue of acyclic k-edge-coloring similarly. The **list acyclic chromatic number** of G is denoted by $\chi'_{la}(G)$.
Our Results: Acyclic Edge Coloring of 1-PG

History

In 1991, Alon et al. proved that $\chi'_a(G) \leq 64\Delta(G)$ for any graph G of maximum degree $\Delta(G)$. This bound was later improved to $16\Delta(G)$ by Molloy and Reed.
Our Results: Acyclic Edge Coloring of 1-PG

Acyclic edge coloring of planar graphs [Hou et al., 2009]

Let G be a planar graph. Then
$$\chi'_a(G) \leq \max\{2\Delta(G) - 2, \Delta(G) + 22\}.$$

Problem

Let G be a 1-planar graph and C be the minimum integer such that $\chi'_a(G) \leq \max\{2\Delta(G) - 2, \Delta(G) + C\}$. Does such a constant C exist?
Our Results: Acyclic Edge Coloring of 1-PG

Acyclic edge coloring of planar graphs [Hou et al., 2009]

Let G be a planar graph. Then

$$\chi'_a(G) \leq \max\{2\Delta(G) - 2, \Delta(G) + 22\}.$$

Problem

Let G be a 1-planar graph and C be the minimum integer such that $\chi'_a(G) \leq \max\{2\Delta(G) - 2, \Delta(G) + C\}$. Does such a constant C exist?
Our Results: Acyclic Edge Coloring of 1-PG

Problem

Let G be a 1-planar graph and C be the minimum integer such that $\chi'_a(G) \leq \max\{2\Delta(G) - 2, \Delta(G) + C\}$. Does such a constant C exists?
Our Results: Acyclic Edge Coloring of 1-PG

List acyclic edge coloring of 4-fold graphs

If G is a graph such that $e(G') \leq 4\nu(G') - 1$ for each $G' \subseteq G$, then $\chi'_{la}(G) \leq 3\Delta + 70$.

List acyclic edge coloring of 1-planar graphs

Let G be a 1-planar graph. Then $\chi'_{la}(G) \leq 3\Delta + 70$.
Our Results: Acyclic Edge Coloring of 1-PG

List acyclic edge coloring of 4-fold graphs

If \(G \) is a graph such that \(e(G') \leq 4\nu(G') - 1 \) for each \(G' \subseteq G \), then \(\chi'_{la}(G) \leq 3\Delta + 70 \).

List acyclic edge coloring of 1-planar graphs

Let \(G \) be a 1-planar graph. Then \(\chi'_{la}(G) \leq 3\Delta + 70 \).
For Further Reading I

For Further Reading II

For Further Reading III

I. Fabrici and T. Madaras.
The structure of 1-planar graphs.

J. Hou, J. L. Wu, G. Liu and B. Liu
Acyclic edge colorings of planar graphs and series-parallel graphs.

Vladimir P. Korzhik.
Minimal non-1-planar graphs.
For Further Reading IV

G. Ringel
A nine color theorem for the torus and klein bottle.

X. Zhang and J. L. Wu,
Coloring 1-planar graphs.
Submitted.

Xin Zhang, Jian-Liang Wu and Guizhen Liu
Coloring 1-planar graphs
School of Mathematics, Shandong University, Jinan, 250100, China
Thanks for your attention!