The Gauss-Bonnet Formula of Polytopal Manifolds and the Characterization of Embedded Graphs with Nonnegative Curvature

Beifang Chen
Department of Mathematics, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

Let M be a connected d-manifold without boundary obtained from a (possibly infinite) collection \mathcal{P} of polytopes of \mathbb{R}^d by identifying them along isometric facets. Let $V(M)$ be the set of vertices of M. For each $v \in V(M)$, define the discrete Gaussian curvature $\kappa_M(v)$ as the normal angle-sum with sign, extended over all polytopes having v as a vertex. Our main result is as follows: If the absolute total curvature $\sum_{v \in V(M)} |\kappa_M(v)|$ is finite, then the limiting curvature $\kappa_M(p)$ for every end p of M can be well-defined and holds the Gauss-Bonnet formula:

$$\sum_{v \in V(M) \cup \text{End}M} \kappa_M(v) = \chi(M).$$

In particular, if G is a (possibly infinite) graph embedded in a 2-manifold M without boundary such that every face has at least 3 sides, and if the combinatorial curvature $\Phi_G(v) \geq 0$ for all $v \in V(G)$, then the number of vertices with non-vanishing curvature is finite. Furthermore, if G is finite, then M has four choices: sphere, torus, projective plane, and Klein bottle. If G is infinite, then M has three choices: cylinder without boundary, plane, and projective plane minus one point.