A note on Path Kernels and Partitions

Wenjie He and Baoli Wang

Applied Mathematics Institute, Hebei University of Technology
Tianjin 300130, P.R. China
he_wenjie@yahoo.com

Abstract

The detour order of a graph G, denoted by $\tau(G)$, is the order of a longest path in G. A subset S of $V(G)$ is called a P_n-kernel of G if $\tau(G[S]) \leq n - 1$ and every vertex $v \in V(G) - S$ is adjacent to an end-vertex of a path of order $n - 1$ in $G[S]$. A partition of the vertex set of G into two sets, A and B, such that $\tau(G[A]) \leq a$ and $\tau(G[B]) \leq b$ is called an (a, b)-partition of G. In this paper we show that any graph with girth g has a P_{n+1}-kernel for every $n < \frac{3g}{2} - 1$. Furthermore, if $\tau(G) = a + b$, $1 \leq a \leq b$, and G has girth greater than $\frac{3}{\frac{3}{2}(a + 1)}$, then G has an (a, b)-partition.

Keywords. path kernel, path semikernel, (a, b)-partition, Path Partition Conjecture