Coloring Games on the Square of Graphs

Daqing Yang∗
Center for Discrete Mathematics
Fuzhou University
Fuzhou, Fujian 350002, China
daqing85@yahoo.com

June 19, 2009

Mathematical Subject Classification: 05C15
Keywords: Competitive coloring, asymmetric coloring game, square of graph.

Abstract

The game chromatic number and game coloring number of the square of graphs were first studied by Esperet and Zhu in [1]. In [1], Esperet and Zhu showed that if \(G \) is a forest of maximum degree \(\Delta \geq 9 \), then \(\chi_g(G^2) \leq \text{col}_g(G^2) \leq \Delta + 3 \), and there are forests \(G \) with \(\text{col}_g(G^2) = \Delta + 3 \). It is also shown in [1] that for an outerplanar graph \(G \) of maximum degree \(\Delta \), \(\chi_g(G^2) \leq \text{col}_g(G^2) \leq 2\Delta + 16 \), and for a planar graph \(G \) of maximum degree \(\Delta \), \(\chi_g(G^2) \leq \text{col}_g(G^2) \leq 23\Delta + 41 \).

In this paper, we show that if \(G \) is a partial \(k \)-tree and \(a < k \), then \((a, 1)\text{-gcol}(G^2) \leq k\Delta + (1 + \frac{1}{a})(\frac{k^2 + 3k + 2}{2}) + 2 \); Especially for partial \(k \)-trees, \(\text{gcol}(G^2) \leq k\Delta + k^2 + 3k + 4 \). For planar graphs \(G \), there exists a constant \(C \), such that \(\text{gcol}(G^2) \leq 5\Delta + C \).

For a graph \(G \), the maximum average degree of \(G \) is defined as \(\text{Mad}(G) = \max\{\frac{2|E(H)|}{|V(H)|} : H \text{ is a subgraph of } G\} \). The very asymmetric coloring games on the square of graphs with \(a \geq k \), where \(\text{Mad}(G) \leq 2k \), were also studied in this paper.

References

∗Supported in part by NSFC under grant 10771035 and grant SX2006-42 of colleges of Fujian.