On the Equitable Coloring of Kneser Graphs

Bor-Liang Chen* Kuo-Ching Huang†

June 18, 2009

Abstract

An m-coloring of a graph G is a mapping $f : V(G) \to \{1, 2, \ldots, m\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in G. The chromatic number $\chi(G)$ of G is the minimum number m such that G is m-colorable. An equitable m-coloring of a graph G is an m-coloring f such that any two color classes differ in size by at most one. The equitable chromatic number $\chi_=(G)$ of G is the minimum number m such that G is equitably m-colorable. The equitable chromatic threshold $\chi^\star_=(G)$ of G is the minimum number m such that G is equitably r-colorable for all $r \geq m$. It is clear that $\chi(G) \leq \chi_=(G) \leq \chi^\star_=(G)$.

For $n \geq 2k + 1$, the Kneser graph $KG(n, k)$ has the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are adjacent in $KG(n, k)$ if they have empty intersection as subsets. The Kneser graph $KG(2k + 1, k)$ is called the Odd graph, denoted by O_k. In this talk, we study the equitable colorings of Kneser graphs $KG(n, k)$. Mainly, we obtain that $\chi_=(KG(n, k)) \leq \chi^\star_=(KG(n, k)) \leq n - k + 1$ and $\chi(O_k) = \chi_=(O_k) = \chi^\star_=(O_k) = 3$. We also show that $\chi_=(KG(n, k)) = \chi^\star_=(KG(n, k))$ for $k = 2$ or 3 and obtain their exact values.

Keywords: equitable coloring, equitable chromatic number, equitable chromatic threshold, Kneser graph, odd graph, intersection family.

*Department of Business Administration, National Taichung Institute of Technology, Taichung 40401, Taiwan. Email: blchen@ntit.edu.tw
†Department of Applied Mathematics, Providence University, Shalu 43301, Taichung, Taiwan. Email: kchuang@pu.edu.tw